Domain Specific Conceptual Model Engineering

© Heinrich C. Mayr

Application Engineering Research Group

Alpen-Adria-Universität Klagenfurt, Austria

Joint EMMSAD-BPMDS Keynote at CAISE 2017, Essen

June 12, 2017

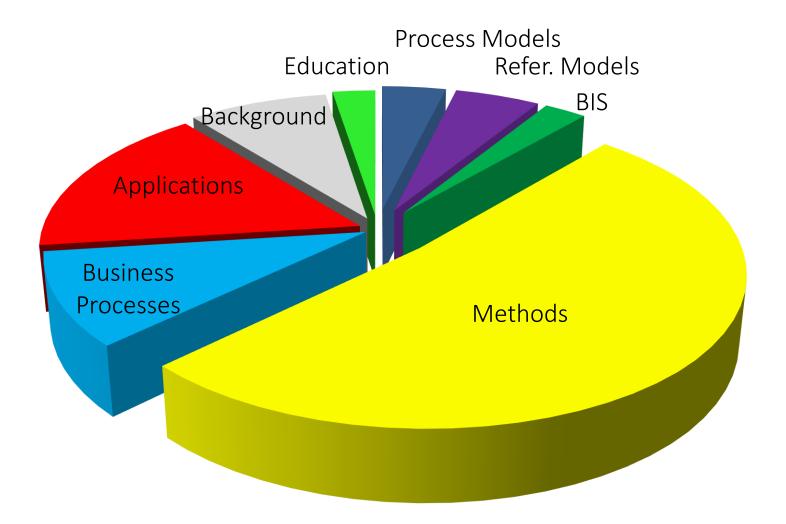
Content

- Modeling
- Modeling Method Engineering
- Example: HCM-L and HBMS
- Commercial

Modeling ?!

Fundamental work and readings

Batini	Guizzardi	Mayr	Rolland
Becker	Hesse	Moody	Rumbaugh
Booch	Henderson-Sellers	Mylopoulos	Smith&Smith
Chen	Jacobsen	Nijssen	Stachowiak
De Antonellis	Kaschek	Olivé	Thalheim
Embley	Lenzerini	Opdahl	Verrijn-Stuart
Frank	Ling	Parnas	Wand
Guarino	Ludewig	Pastor	+++++


D-A-CH Modeling Community

Biennial Conference since 1998: "Modellierung XXXX"

3 days, usually 110-150 participants

D-A-CH Research

International Community

Annual Conference "Conceptual Modeling" since 1979: **ERxx**

3-4 days, usually 150-200 participants

- <u>http://er2017.pros.webs.upv.es/</u>
- <u>http://conceptualmodeling.org/</u>

Annual Conference on Model Driven Engineering Languages and Systems: Models xx

<u>http://www.cs.utexas.edu/models2017</u>
 <u>/home</u>

MODELS 2017 Austin, Texas, Sept 17-22, 2017

HOME PROGRAM COMMITTEES VENUE SF

Observation

"Humans have an ambivalent position to modeling"

- they are modeling permanently but mostly not being aware of it:
 - any kind of thinking, communicating about something implies modeling
 - Writing a novel = Modeling
 - Requirements engineering = Modeling to a large extent
 - Programming = Modeling

Observation

"Humans have an ambivalent position to modeling"

- when modeling consciously, they do it often unwillingly
 - prefer doing to planning; hipp: Agility ("agere")
 - challenge the benefits of systematic modeling; use cost and time needed as an excuse
- but: in technical and life critical domains, modeling is a must – and done in most disciplines

Observation

"The Law of Logistic Growth* holds for Modeling Languages" smooth beginning

increasing growth

turning point

decreasing growth

collapse

*Pierre-François Verhulst 1838

PSL/PSA (Teichroew, 1964ff)

ISDOS: Information System Design and Optimization System

initially lean and clear; at the end:

19 "Objekts" (ENTITY, ATTRIBUTE, CONDITION, ELEMENT, EVENT, PROCESS, REQUIREMENT etc.)

102 (!) "Relationships"

SA (Tom de Marco, 1978)

	PURPOSE	CONCE	1	MECHANISM NOTATION		NODE	1	PURPOSE	CONCEPT		
1	BOUND CONTEXT	INSIDE/OUTSIDE		SA BOX	HAM		A11	22	COOPERATION	INTERCHANGE OF SHARED RESPONSIBILITY	
1	. BELATE/COMMECT	7 mon/10		SA ARPON	LAPEL		A12	23	SUPPPESS INTERCHANGE	ALLOW 2-WAY	-
3		INPUT-OUTPUT		SA INTERFACE	UNENT fourent		A13		DETAILS	PIPELINES	-
•		CONTROL		SA INTERFACE			A]4	24	PASS-THROUGH"	ALLOW ABROWS TO CO OUTSIDE DIAGRAMS	
5	SHOW MEANS	SUPPORT		SA MECHANISM	E		A15	25	SUPPRESS HEEDED-ARROW CLUTTER	ALLOW TAGGED JUMPS WITHIN DIAGRAM	,
6	HAME APTLY	ACTIVITY	DATA THINGS	SA NAMES	ACTIVITY	DATA	A211	26	SHOW NEEDED	ALLOW HORDS	
,	LABEL APTLY	Things	HAPPENINGS	SA LABELS	HOUN	VERA	A212	27		ALLOW REMOTE LOCATION OF WORDS IN DIAGRAM	T
8		1-0	C-0	PATH		0-	A213				t
9		c	1	CONSTRAINT	h	-0	A214	28	ABOUT DIAGRAM	ON (NOT LN) DIACRAN	1
10	SHOW RELEVANCE	100	100	ALL INTERFACES	-0-	-0-	A215	29	ENSURE PROPER ASSOCIATION OF WORDS	THE WORDS TO INTENDED SUBJECT	
11	On17 Davious	c-0	1-0		0-	+0+	A216	30	UNIDUE SHEET BEFERENCE	CHRONOLOGICAL CREATION	
12	BE EPPLICIT	PIPELINES,			-		A221	31	UNIOUE BOX	PATH DOWN TREE FROM BOX NUMBERS	I
15	CLUTTER	CONDUITS,		J01N .	A	74.	A221	32	SAME FOR MULTI-HODELS	PRECEDE BY HODEL WANE	T
14	DE CONCISE AND ELEAR		ABLES,	BUNDLE	E	(-AUD)	A222	33	UNIQUE INTERFACE REFERENCE	ICON WITH BOX NUMBER	T
15		MULTI-WINES		SPREAD	(-(aua)	h_	A222	34	UNIOUE APRON REFERENCE	FROM - TD	T
1	5 SHOW	EXPLICIT ALTERNATIVES		OR BRANCH	A 08	4	A223	35	SHOW CONTEXT REFERENCE	SPECIFY A REFERENCE POINT	
1	ENCLUSIVES			OR JOIN	<u> </u>	A 08.8	A223	36	ASSIST COPRECT	SHOW DOMINANCE GEDHEIRICALLY (ASSIST PARSE)	
1	B SHOW INTERFACES	-6		SA BOUNDARY ARROW			A231	37	ASSIST UNDERSTANDING	PROSE SUMMARY OF MESSAGE	
- 1	SHOW EXPLICIT PARENT CONNECTION	NUPIBER FOR WRITE	CONVENTION PARTNI, ICON CODE CHILD	E	· · · · · ·		A232	38	HIGHLIGHT FEATURE	SPECIAL EFFECTS	
	0 SHOW UNIQUE DECOMPOSITION	BOIRD	ART ARROWS	C-NUMBER OR PAGE NUMBER OF DETAIL DIAGRAM		E DR	A233	39	DEFINE TERMS	GLOSSARY WITH WORDS & PICTURE	\$
	1 OR VARIABLE	DRE	WITH MAME)	SA CALL ON SUPPORT .			A234	40	ORGANIZE PAGES	PROVIDE TABLE OF CONTENTS	

Tool: IDEFx still used? nostalgy?

MOTATION

品出

NOTE:

0----

TOUCH REFERENT)

. D. D. H .

PARENT P . BOX .

MODEL NAME /NODE

BOX# . ICOM CODE

BOX ICOM

10× 100%

NOPEF . I . INTEGER AS

NOTER : F . INTEGER AS

. G : INTEGER

AUTHOR INIT! INTEGER

MECHANISM

SA 7-WAY

SA "TUNNELING" (WITH REFERENCES)

SA NOTE

SA POOTNOTE

SA "SOULCELE"

SA C-HUMBER

SA NODE NUMBERS

SA MODEL MANE

SA BOX ICOM

PAIR OF BOX ICOMS

SA REF.EXP. "DOT"

STAIRCASE LAYOU

SA TENT

SA GLOSSARY

SA NODE INDEX

NV)DE

A311

A312

A313

A314

A32

A37

A41

A92

A42

A43

A44

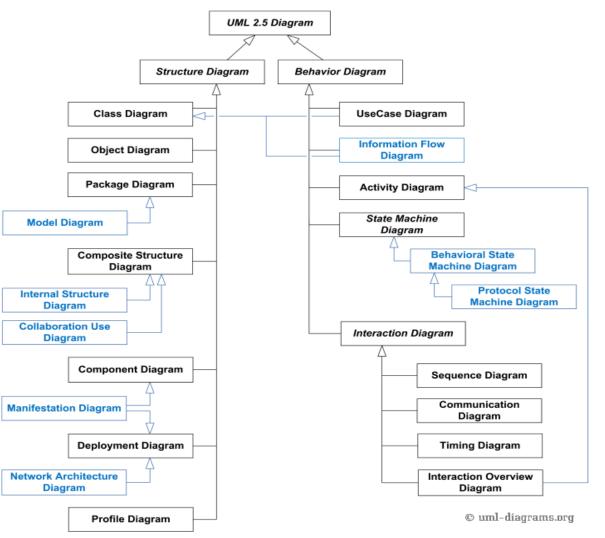
AUS

85

AS

10 A37

Fig. 2. SA language features.



UML 0.9 (1996)

- Use Case Diagram
- Class Diagram
- Sequence Diagram
- Collaboration Diagram
- State Diagram

Note, items in blue are not part of official taxonomy of UML 2.5 diagrams

http://www.uml-diagrams.org/uml-25-diagrams.html

"The Law of Entropy is valid for Modeling"

- Without the input of external energy (e.g., the users'),
- the community does not achieve
- to put some order
- into the world of modeling

- hugh variety of uncoordinated approaches
- terminology
- reinventions
- method growth
- zoo of tools

Terminology

- conceptual | conceptional
- synonyma | homonyma
- parallelism | concurrency
- ontology | meta model | conceptual model | schema

Imprecise Terms

semiformal, semistructured, ...

mapping | transformation

the attribute concept

the role concept

Reinventions

object orientation + message concept (Christen Nygaard 1966, B. Langeförs 1973)

diagram types

intension/extensions hierarchy

Reinventions

Fig. 1. The four-level metamodeling architecture.

Atkinson, C.; Kühne, Th.: Rearchitecting the UML Infrastructure. ACM Transactions on Modeling and Computer Simulation, Vol. 12, No. 4, 2002.

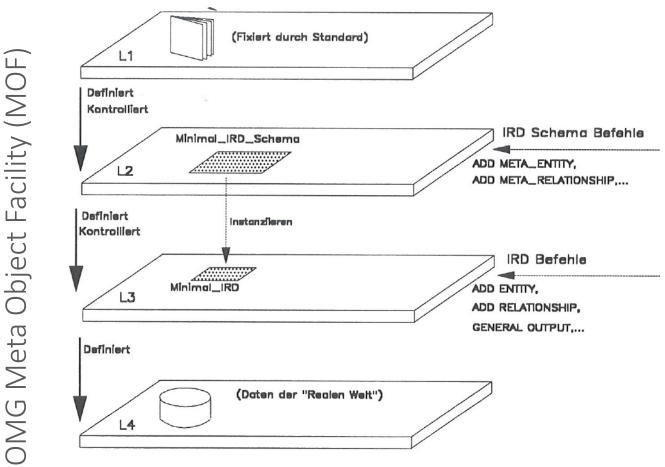


Abb. 5-9: Das ANSI Kern-Modul

DMG Meta

AE-Team

H. Thoma, EMISA-Forum 1/88

"free methods from

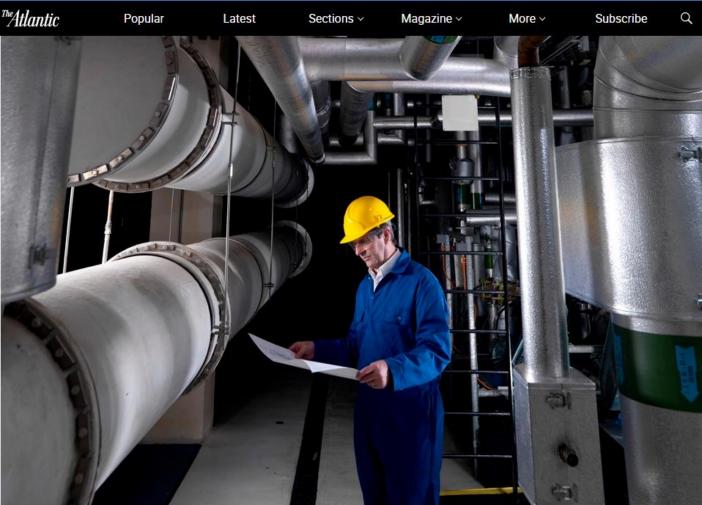
Baroque opulence,

find a compromise between

correctness, completeness and understandability

to have them

profitably used in practise"

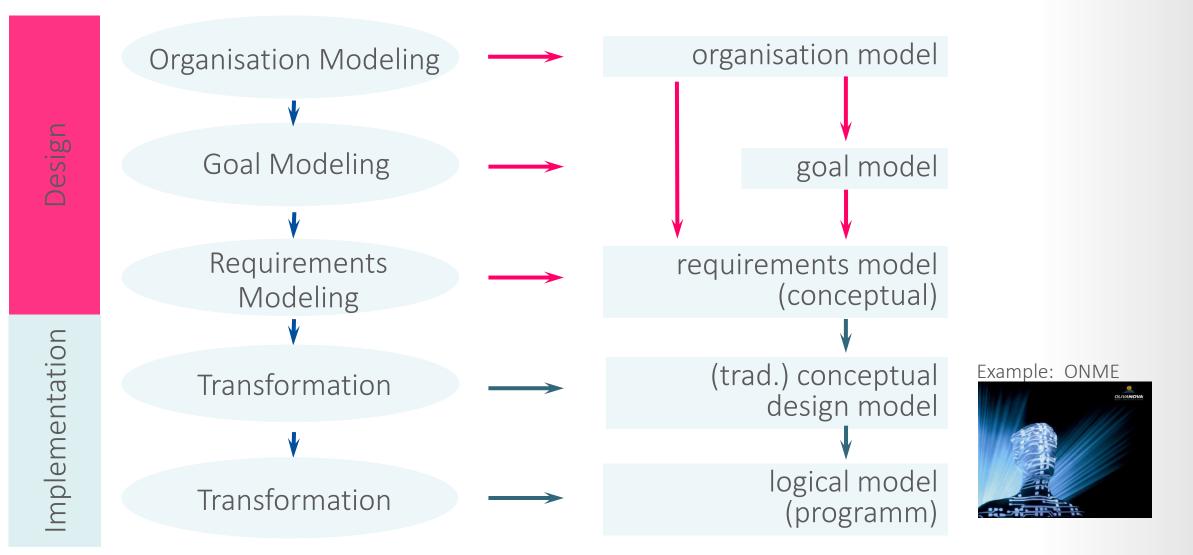

Conclusion

designed by 🍲 freepik.com

- put "overloaded", "unified" methods out of the focus
- put the use of models into the focus
- provide modeling means that are intuitively understandable by the stakeholders, i.e.,
 - lean and focused set of notions
 - use "efficient" visual notations
 - support transformations between languages

Conclusion

- A challenge for Software Development
- Modeling as engineering technique
- initially adopted by database engineers
- Models as kernels of each development
- Mappers and Transformators



Andrew Brookes / Corbis

Programmers: Stop Calling Yourselves Engineers

It undermines a long tradition of designing and building infrastructure in the public interest.

MDSD: by transformations

Modeling Method Engineering

Domain Specific Modeling Languages (DSML)

- + Lean set of modeling concepts
- + Explicit constraints that are tailored for the particular domain and purposes
- + Lexical/graphical notations that are familiar and/or easy to understand by the users in the given domain

Successful DSML development needs a systematic procedure

comparable to the development of any complex artefact, i.e. should

be grounded on a validated process model

exploit the existing body of knowledge w.r.t.

- formal languages, conceptual grammars, etc.
- semantic interpretation
- effective visual notations

DSMM: Domain Specific Modeling Method

should

provide guidelines, patterns, style guides etc. for its application

be supported by

- a modeling tool, as well as by
- means for model management

Together, these components form a DSMM

Modeling Method Characteristics

Conception

Modeling Language (notions and representations)

Methodology

Documentation

"Historic" references:

Kaschek, R.; Mayr, H.C.: A Characterization of OOA-Tools. Proc. 4th Int. Symposium on Assessment of Software Tools. IEEE Computer Society Press. 1996.

Kaschek, R.; Mayr, H.C.: Characteristics of Object Oriented Modeling Methods. EMISA Forum 2/1998

AE-Team

Process of DSMM development

J. Michael, H. C. Mayr: Creating a Domain Specific Modelling Method for Ambient Assistance. Proc. 2015 International Conference on Advances in ICT for Emerging Regions (ICTer)
U. Frank: Domain-Specific Modeling Languages: Requirements Analysis and Design Guidelines. In (I. Reinhartz-Berger et al. eds.): Domain Engineering, Springer, 2013, pp. 133-157.
U. Frank: Outline of a method for designing domain-specific modelling languages. ICB-Research Report 42 University Duisburg-Essen, 2010.

Preparation

- Clarify Scope and Purpose
- Analyse Requirements
- Analyse
 Context
- Conception

Language Development

- Select a Base Modeling Language
- Specify Language
- Design the Graphical Notation

Modeling Process

 Provide a stepwise Procedure for Modeling using the developed Language

- Modeling Tool Development
- Specify Tool Requirements
- Select Platform & Meta Modeling Language
- Define View
- Implement Tool
- Platform
 Dependent
 Add-ons

Evaluation

- Design
 Evaluation
- Perform
 Evaluation
- Assess the Results

Preparation: Scope, Context, Conception

intended domain, e.g.,

- real time, planning, CAD, embedded systems, enterprise modeling, BPM etc.
- underlying software life cycle (SLC) model and SLC-phases to be instantiated
- involved persons (their roles, qualification profiles and responsibilities)
- intended design products (documents)
- usage operations / use cases
- basic philosophy (ontological, epistemological, other)
- starting point (e.g. pre design)

Modeling Language, Notions

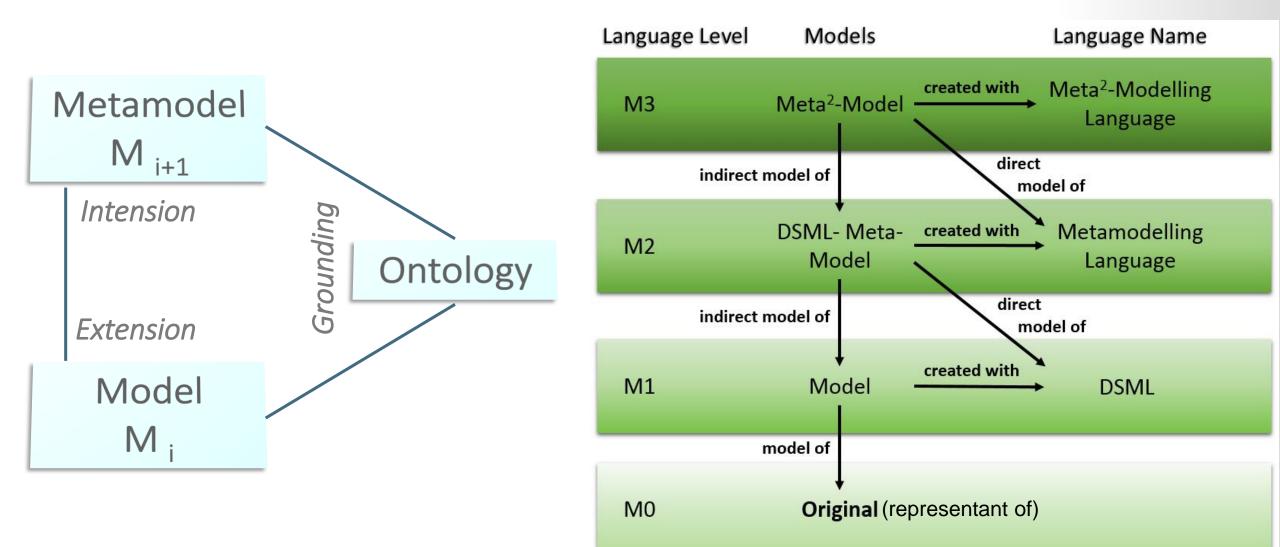
set of notions: meta model

- sets of representation concepts: language
- defined submodels (coherence)

quality criteria

- intuitive understandability
- orthogonality of modeling notions

adequacy with respect to the conception


practicability

AE-Team

quantitative aspects

Modeling Concepts: MOF Alignment

Representation Concepts

per set (several are possible):

• correspondence between representation concepts and modeling notions

extendibility

practicability

novelty

quality criteria

intuitive understandability

Methodology

process model

goals

e.g. to reach security, safety, ergonomics, quality levels

design primitives schema or design process 'molecules'

means for design product analysis e.g., reachability

Process Model Aspects

- selection & instantiation of goal templates
- complexity treatment
- reuse of former design/development results
- ensuring performance requirements, security
- ensuring quality standards
- controlled design document evolution, validation and verification
- prototyping

Methodology

method style support

applicability

conclusiveness of process model steps (intuitive, reasonable, convincing)

learnability of the process model

model management support: tool

Documentation

references

education (textbook, courses, certificates)

clearness

distinction from other DSMMs

tolerance against variations of conception, methodology, process model

description of the DSMM scope

Process of DSMM development

J. Michael, H. C. Mayr: Creating a Domain Specific Modelling Method for Ambient Assistance. Proc. 2015 International Conference on Advances in ICT for Emerging Regions (ICTer)
U. Frank: Domain-Specific Modeling Languages: Requirements Analysis and Design Guidelines. In (I. Reinhartz-Berger et al. eds.): Domain Engineering, Springer, 2013, pp. 133-157.
U. Frank: Outline of a method for designing domain-specific modelling languages. ICB-Research Report 42 University Duisburg-Essen, 2010.

Preparation

- Clarify Scope and Purpose
- Analyse Requirements
- Analyse
 Context
- Conception

Language Development

- Select a Base Modeling Language
- Specify Language
- Design the Graphical Notation

Modeling Process

 Provide a stepwise Procedure for Modeling using the developed Language

- Modeling Tool Development
- Specify Tool Requirements
- Select Platform & Meta Modeling Language
- Define View
- Implement Tool
- Platform
 Dependent
 Add-ons

Evaluation

- Design
 Evaluation
- Perform
 Evaluation
- Assess the Results

Example HCM-L: A Domain Specific Modeling Language for Ambient Assistance

HCM-L: Human Cognitive Modeling Language

Human Behavior Centered DSML

Reduced complexity: Small set of modeling notions

Representations aligned with Moody's principles

Goal: Intuitive understandability for domain experts (caregivers, doctors)

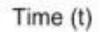
Developed in the context of the HBMS project

HBMS: Human Behavior Monitoring and Support

Ambient Assistance to support autonomy in case of decreasing memory

Human Cognitive

Model (HCM)


Complete the Forgotten Information

The Idea

- Conceptualize a Person's Episodical Knowledge
- Establish a Model of that Knowledge
- Use that Model for support

Reduced Capability

Individual Human Behavior

Motivation

5 "Grand Challenges" of the European Union

Máire Geoghegan-Quinn, EU Commissioner for Research, Innovation and Science; http://www.research-europe.com/index.php/2011/08/595

- climate change, energy, food security, health
- ageing population

Population 60+	Europe	Austria	Carinthia
2050	ca. 30%	34,5%	38,8%

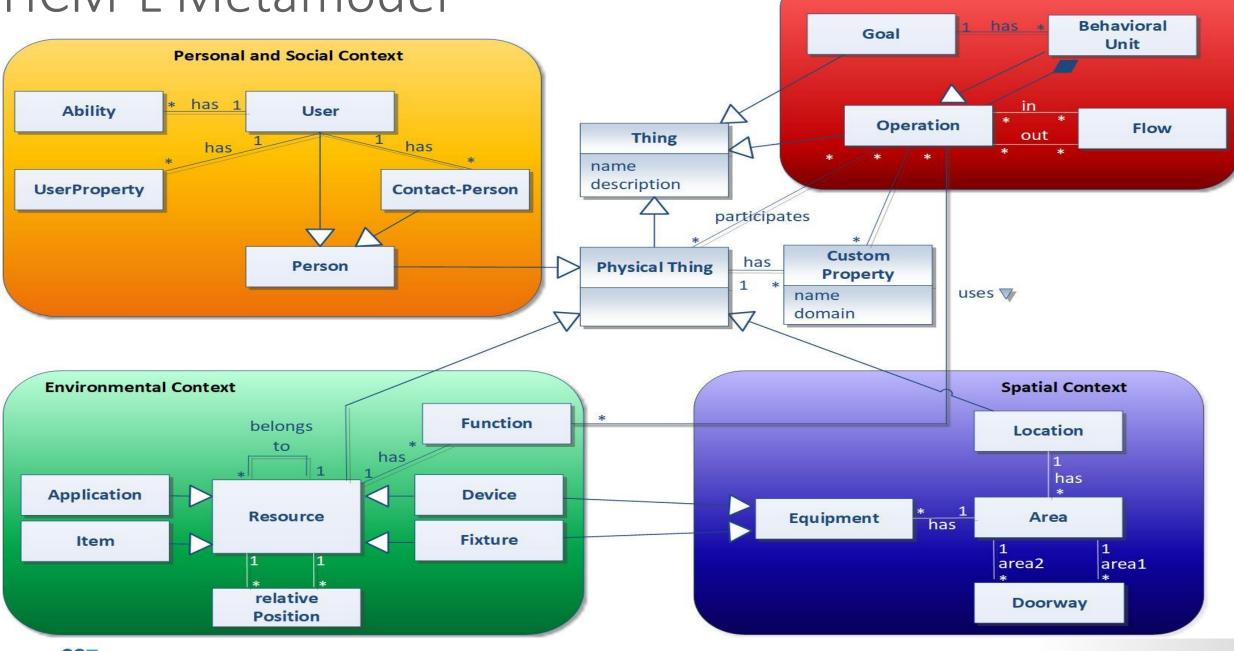
- \rightarrow increasing share of older persons
- → decreasing number of working people
- \rightarrow increasing lack of care givers
- \rightarrow need of assistive systems

[Ref.: Statistik Austria]

Basic Domains for Assistive Systems

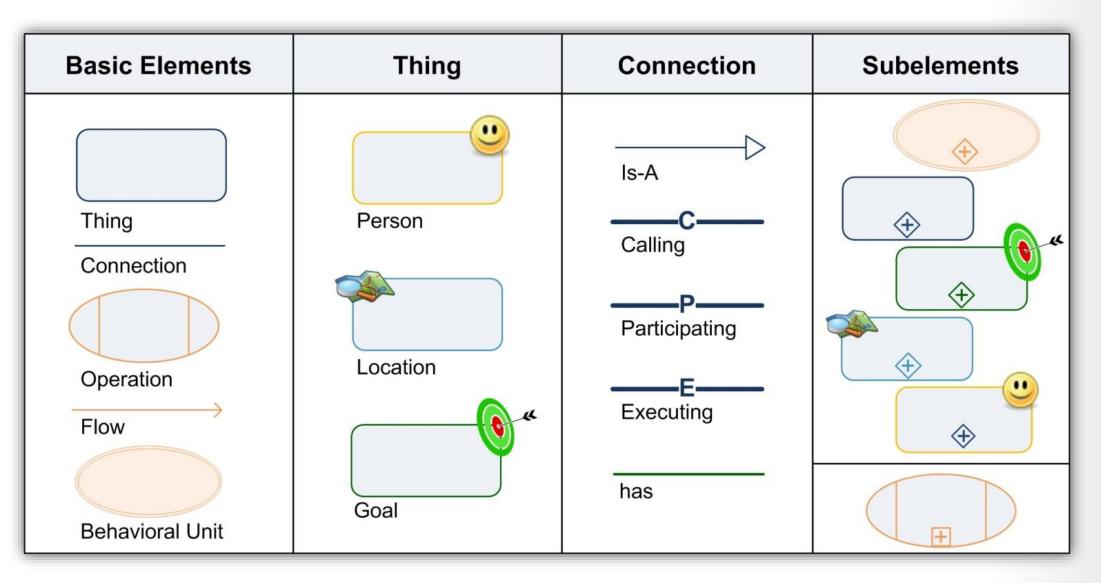
Basic Activities of Daily Living (ADL) [Katz]

- Bathing
- Dressing
- Toileting
- Transferring
- Continence
- Feeding

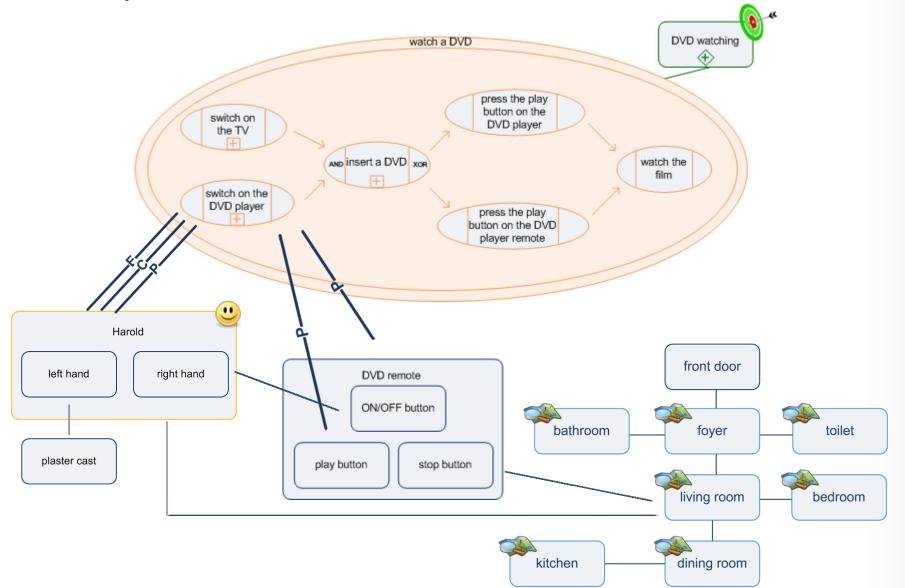

Instrumental Activities of Daily Living (IADL)

- Ability to use the phone
- Shopping
- Meal Preparation
- Homework
- Loundry
- Mobility
- Responsibility for taking medications
- Ability to manage finances

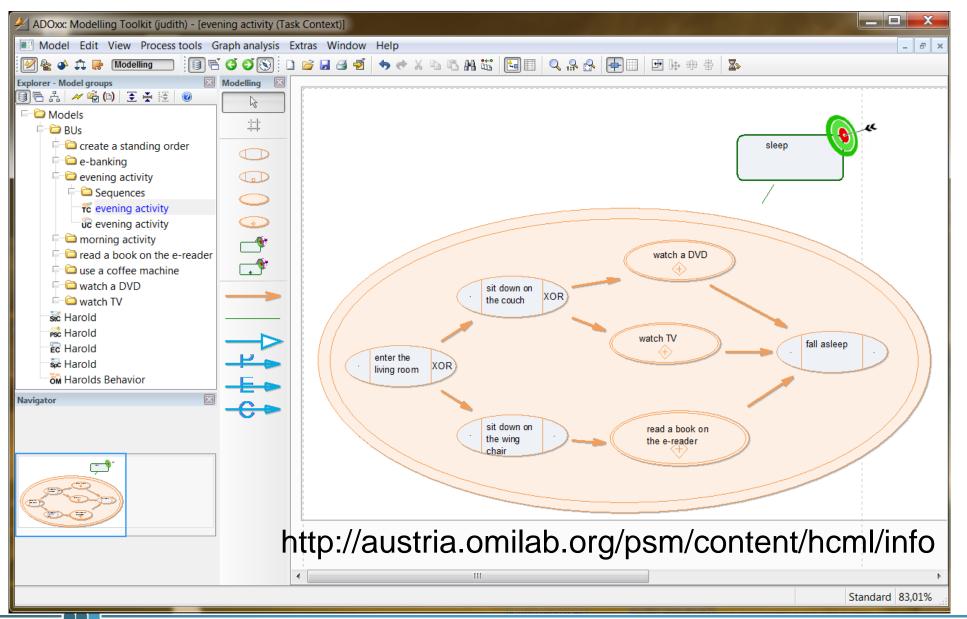
Contexts to be considered

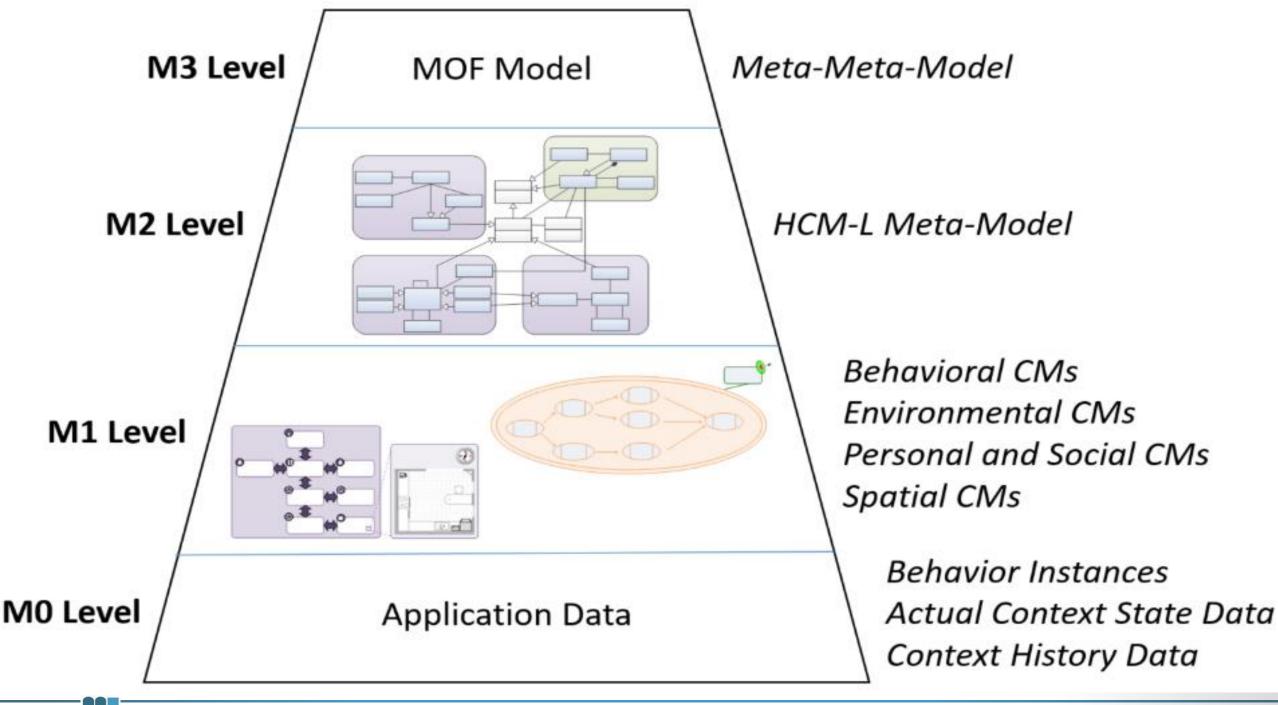


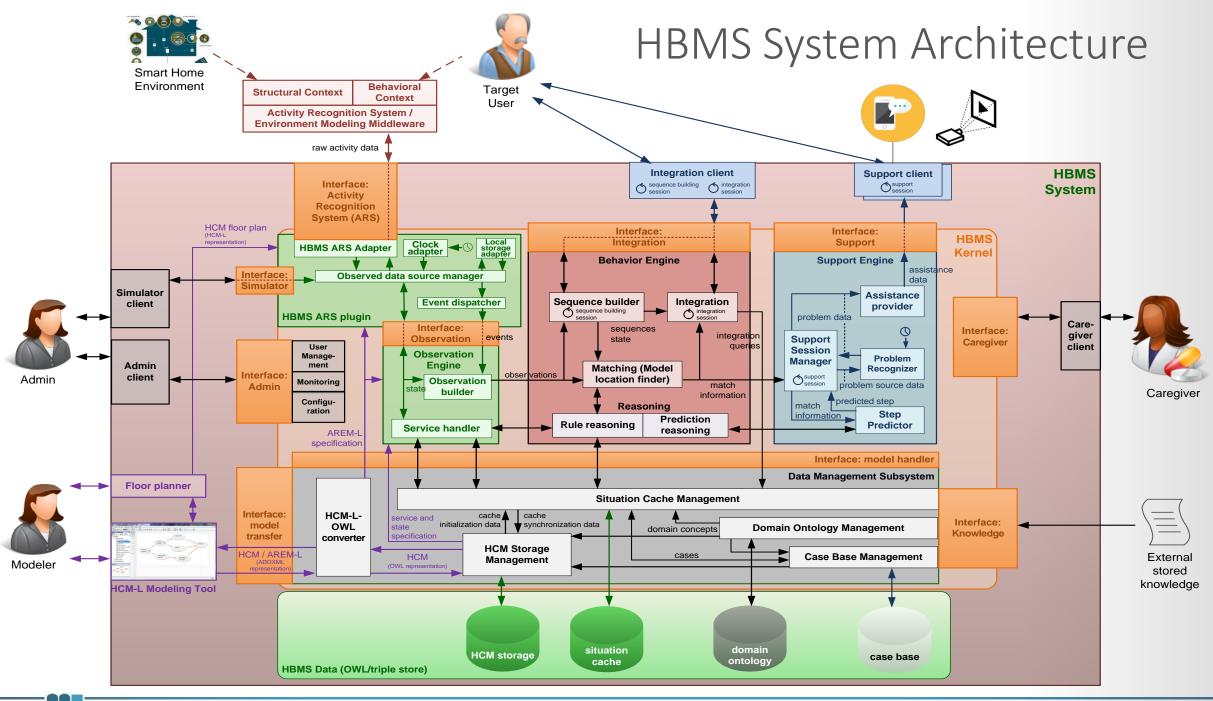
HCM-L Metamodel

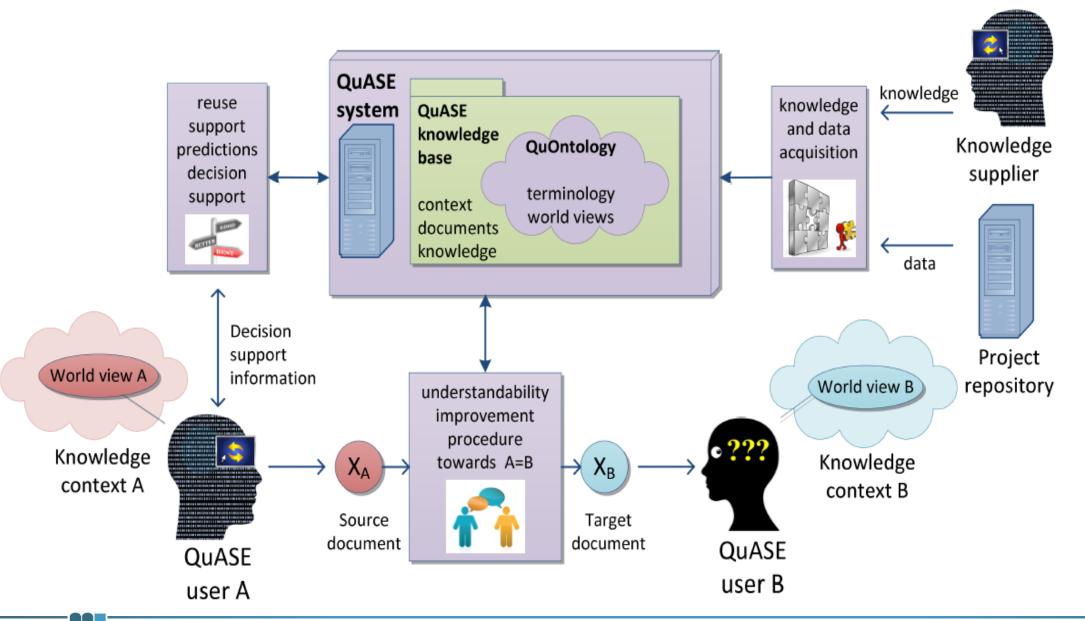

Behavioral Context

HCM-L Elements




Moody, D.: The "Physics" of Notations: Toward a Scientific Basis for Constructing Visual Notations in Software Engineering. IEEE Trans. Software Eng. 35, 756-779 (2009)


Model Example


HCM-L Modeler

Current Research: Quality Aware Software Engineering

AE-Team

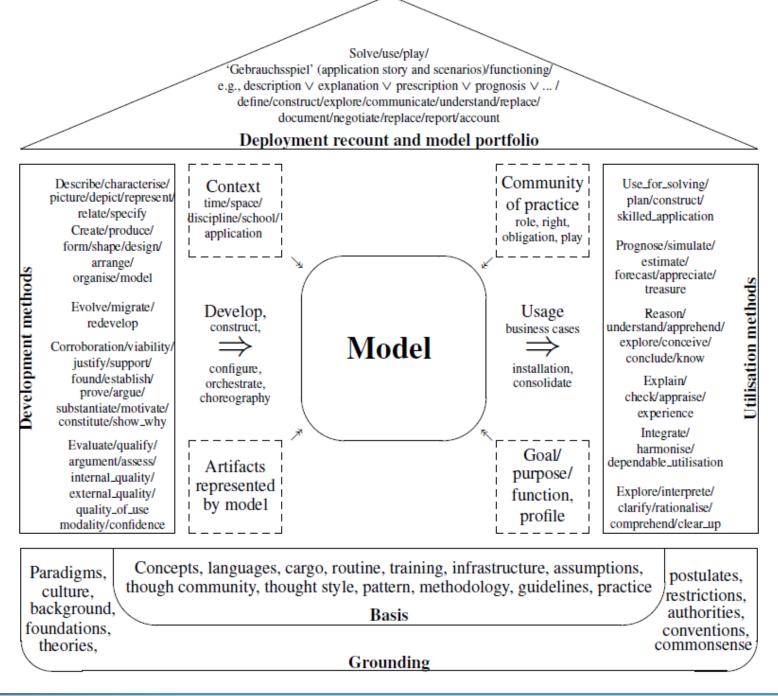


Figure 5: Facets of the model with grounding and basis as the fundament,withfour governing directives,with technical and technological pillars for development and utilisation, and with the application roof

Bernhard Thalheim: "The Conceptual Model: An Adequate and Dependable Artifact Enhanced by Concepts". Information Modelling and Knowledge Bases, Vol 25, IOS Press, 2014

HBMS papers

HBMS-Video

https://www.youtube.com/playlist?list=PL-e6CFSCbRDf3MqjtFaJyc73C0ZkPg19n

- J. Michael, H.C. Mayr: Intuitive understanding of a modeling language. In: Proc. 13th Asia-Pacific Conference on Conceptual Modelling ACSW '17, January 2017, Geelong, Australia; ACM, New York, NY, USA, DOI: https://doi.org/10.1145/3014812.3014849.
- J. Michael, H.C. Mayr: Creating a Domain Specific Modelling Method for Ambient Assistance (Extended Abstract). EMISA Forum 26, Heft 2, 2016, pp. 25-28. ISSN 1610-3351
- S. Ranasinghe, F. Al Machot, H.C. Mayr: <u>A Review on Applications of Activity Recognition Systems with Regard to Performance and</u> <u>Evaluation.</u> International Journal of Distributed Sensor Networks, 2016.
- F. Al Machot, H.C. Mayr, S. Ranasinghe: A Windowing Approach for Activity Recognition in Sensor Data Streams. In: Proc. 8th IEEE Int. Conf. On Ubiquitous and Future Networks, Vienna July 2016.
- F. Al Machot, H.C. Mayr: Improving Human Activity Recognition by Smart Windowing and Spatio-Temporal Feature Analysis. In: Proc. 9th Int. Conf. on Pervasive Technologies Related to Assistive Environments PETRA 2016, ACM Digital Library Proceedings, 2016.
- H.C. Mayr et.al.: HCM-L: Domain Specific Modeling for Active and Assisted Living. In D. Karagiannis, H.C. Mayr, J. Mylopoulos (eds.) Domain-Specific Conceptual Modeling - Concepts, Methods and Tools. Springer, 2016.
- J. Michael, H.C. Mayr: Creating a Domain Specific Modelling Method for Ambient Assistance. In: Proc. Int. Conf. on Advances in ICT for Emerging Regions ICTer2015, Colombo, August 2015.
- J. Michael, F. Al Machot, H.C. Mayr: ADOxx based Tool Support for a Behavior Cen-tered Modeling Approach. In: Proc. 8th Int. Conf. on Pervasive Technologies Related to Assistive Environments PETRA 2015, ACM Digital Library Proceedings, 2015.
- J. Michael, F.Al Machot, H.C. Mayr (2014): A Behavior Centered Modeling Tool Based on ADOxx. CAISE Forum 2014, CEUR Workshop Proceedings, Vol.1164, Springer, pp 153-160.

HBMS papers

- F. Al Machot, H. C. Mayr, J. Michael (2014): Behavior Modeling and Reasoning for Ambient Support: HCM-L Modeler. In: Proc. 27th Int. Conf. on Industrial, Engineering and Other Applications of Applied Intelligent Systems, Kaohsiung, Taiwan.
- A. Katzian: Kommunikationsgestaltung für Ambient Assistance. Masterarbeit, Univ. Klagenfurt, 2014.
- J. Michael (2014): Kognitive Modellierung für Assistenzsysteme. Dissertation, Univ. Klagenfurt, 2014.
- J. Michael, H.C. Mayr (2013): Conceptual Modeling for Ambient Assistance. In: W. Ng, V.C. Storey, J. Trujillo (Hrsg.): ER 2013, Hongkong. Springer 2013, Spp403-413.
- J. Michael; A. Grießer; T. Strobl, H.C. Mayr (2013): Cognitive Modeling and Support for Ambient Assistance. In: Proc. 4th Int. United Information Sytems Conference, UNISCON 2013. Lecture Notes in Business Information Processing 137, Springer, pp73-86.
- H.C. Mayr, J. Michael (2012): Control Pattern Based Analysis of HCM-L, a Language for Cognitive Modeling. In: Proc. ICTer 2012, Colombo.
- V.A. Shekhovtsov, H. C. Mayr: Let Stakeholders Define Quality: A Model-Based Approach. Proc. 19th GI-WIVM Workshop 'Qualitätsmanagement und Vorgehensmodelle', Düsseldorf, September 2012.
- J. Michael, V. Bolshutkin, St. Leitner, H.C. Mayr, H.C. (2012): Behavior Modeling for Ambient Assistance. Proc. Int. Conf. on Management and Service Science MASS 2012, Shanghai.
- A. Grießer, J. Michael, H.C. Mayr: Verhaltensmodellierung und automatisierte Unterstützung im AAL-Projekt HBMS. In: BMBF, AAL Association, VDI/VDE/IT (Hrsg.): Technik für ein selbstbestimmtes Leben (AAL 2012), Frankfurt am Main.
- J. Michael; H.C. Mayr: Behavior Model Mapping. Proc. 3rd Int. Workshop on Model-Driven Architecture and Modeling-Driven Software Development MDA & MDSD, Beijing 2011.

Commercia

Next Generation Enterprise Modelling - Summer School Methods | Frameworks | Tools

www.omilab.org/camp2014

universität

Lifelong

Learning

Programme

ALPEN-ADRIA

Thanks for your attention.

Informatics @ aau

The Application Engineering Research Goup

Fields

- Modeling Methodology
- Requirements Engineering
- Language Engineering
- Knowledge Engineering
- User Centered Applications
- E-Learning

"There is nothing more practical than a good theory"

Teaching

Research-driven / Cooperative Approach

Universitas Magistrorum et Scholarium

Strengthened by renowned academics

Jörg Desel, Fernuniversität Hagen

Athula Ginige, Western Sydney University, AUS

Steve Liddle, Brigham Young University, USA

Oscar Pastor, TU Valencia, ES

Bernhard Thalheim, Universität Kiel

Commercial

47. Jahrestagung der

Informatik e.V. (GI)

Workshops | Tutorien | Spezialformate Hauptvorträge Tag der Informatik | 28.9. Michael Wooldridge University of Oxford

Hauptvorträge Tag der Wirtschaft | 29.9.

Sabine Herlitschka Infineon Technologies Austria AG

Thomas Elter Technische Universität Wien Hanns-Thomas Kopf Atos CEE Andreas Zeller Universität des Saarlandes Andreas Reuter HITS, EML und Universität Heidelberg Peter Liggesmeyer Technische Universität Kaiserslauten

Gesellschaft für

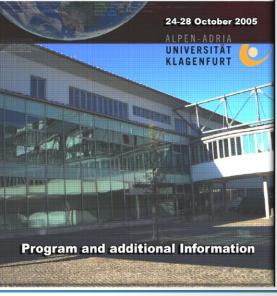
Michael May Siemens

ER 2017

Nov. 6-9 Valencia, Spain

Help us to disseminate #ER2017VLC on 🕴 🖌 🌱

ER 2017 The 36th International Conference on Conceptual Modeling Nov. 6th-9th, 2017, Valencia Spain 174 11 38 04



24th International Conference on Conceptual Modeling

INFORMATIK 2016

Informatik: von Menschen für Menschen

26.-30.September 2016

Alpen-Adria-Universität

Atos

addIT

Klagenfurt, Österreich

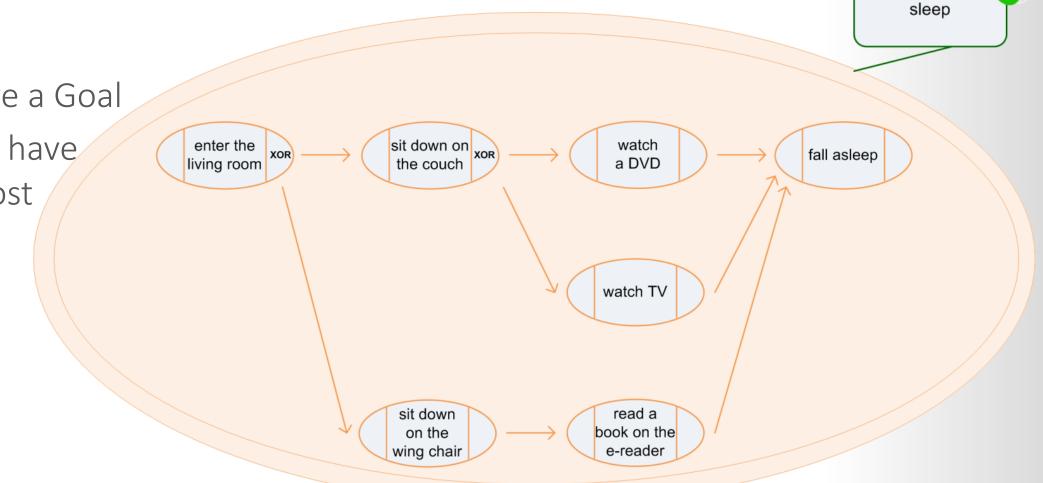
Friedrich Georg Hoepfner CyberForum e.V. P kapsch >>>)•(SER Pearson Springer Vieweg STUP

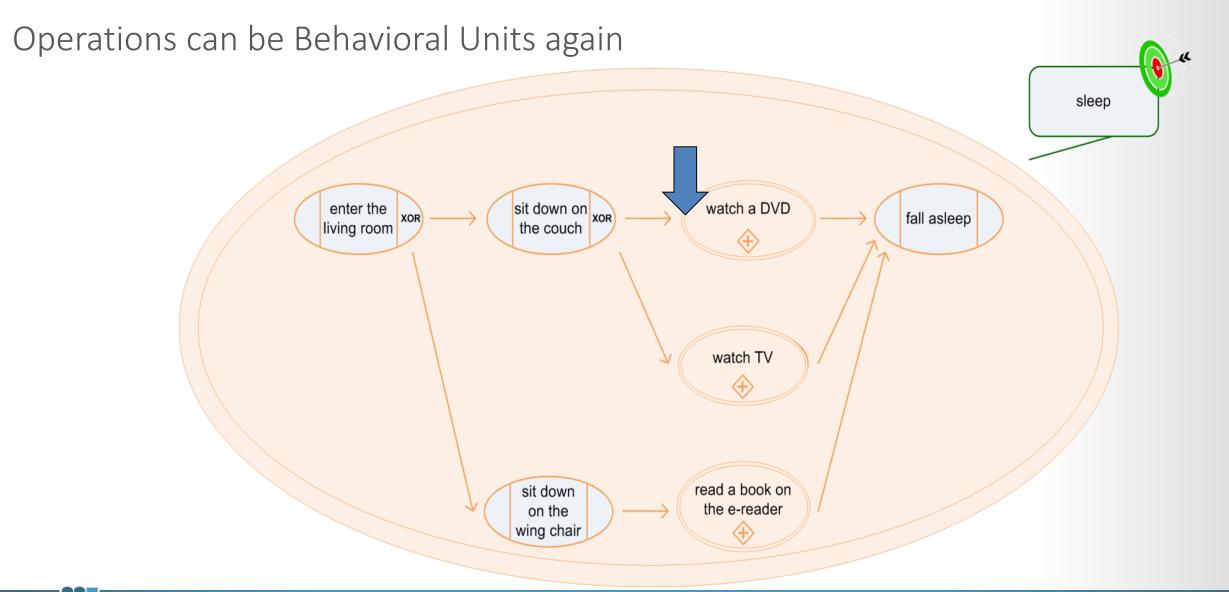
www.informatik2016.de

Master Courses

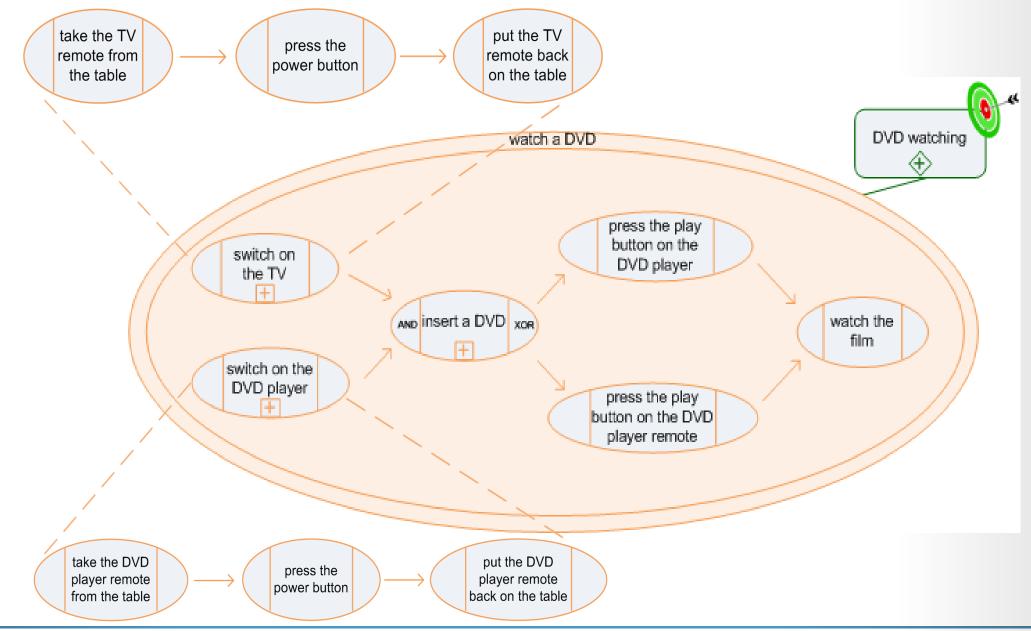
- Seminar in Business Information Systems Seminar in Natural Language Processing Seminar aus Wirtschaftsinformatik Current Topics in Business Information Systems Current Topics in Natural Language Processing Selected Topics in Business Information Systems Business Technologies
- Linguistische Grundlagen des Suchmaschinenmarketings

Master Program IT Business Solutions, MSc


	troduction, Fun	damentals		Module und
Introduction and Fundamentals	Scientific Writing			Lehrinhalte
30 Einheiten S	trategic Manage	ment		
Introduction to Strategic Management	Business Models, Service Level Ag- reements, Delivery Concepts and IT- Strategy Alignment	Internal and External Strategic Analysis (SWOT)	IT Governance and Certificates	
38 Einheiten	perational IT Ma	inagement		
T Controlling and T Benchmarking	Operational Management 1: IT Cost Accounting	Operational Management 2: Managing Cost and Success	Strategic IT-Management	
96 Einheiten S	oftware and Dat	a Management		
IT in Business Processes	Enterprise Architecture Management and Virtualization	IT Security and Security Policies, Cryptology and Authentication	Software Development Processes	
12 Einheiten	echnology			
Data Management	IT Networks and Network Technologies	Web- and Web- 2.0-Technologies	Workplace Technologies	Tools and Automation
18 Einheiten	Law		77	1000
T Law Overview, tandards, Certifi- ates and Related Areas	IT Contract Law, Copyright Law, Privacy	Procurement Law and Tendering		
18 Einheiten	Business Cons	ulting		
Introduction into Consultative Setling	Sales and Bid Processes			
6 Einheiten P	roject, Change a	and Personal Ma	nagement	
Project Manage- tent According to PMA/IPMA	Change Manage- ment in the context of IT-Systems Implementation	Competence Development and Time Management	Team Development	
Abschluss N	laster Thesis		T	


9020 Klagenfurt am Worthersee / AUSTRIA

Behavioral Unit

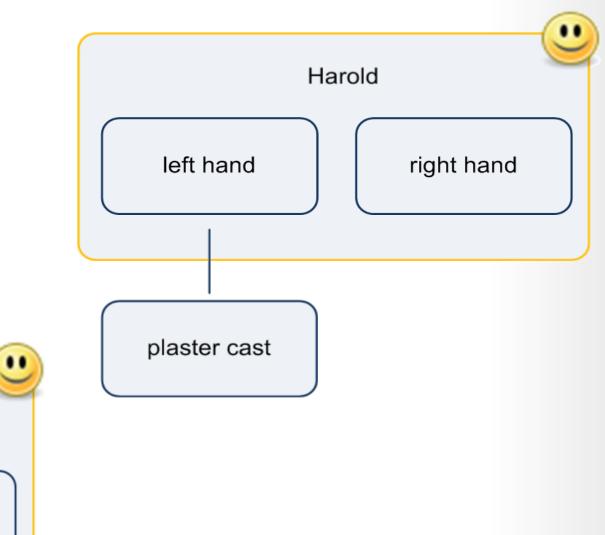

- Aggregate of connected Operations
- Is to achieve a Goal
- Operations have pre- and post conditions

BU Refinement

Operation Macros

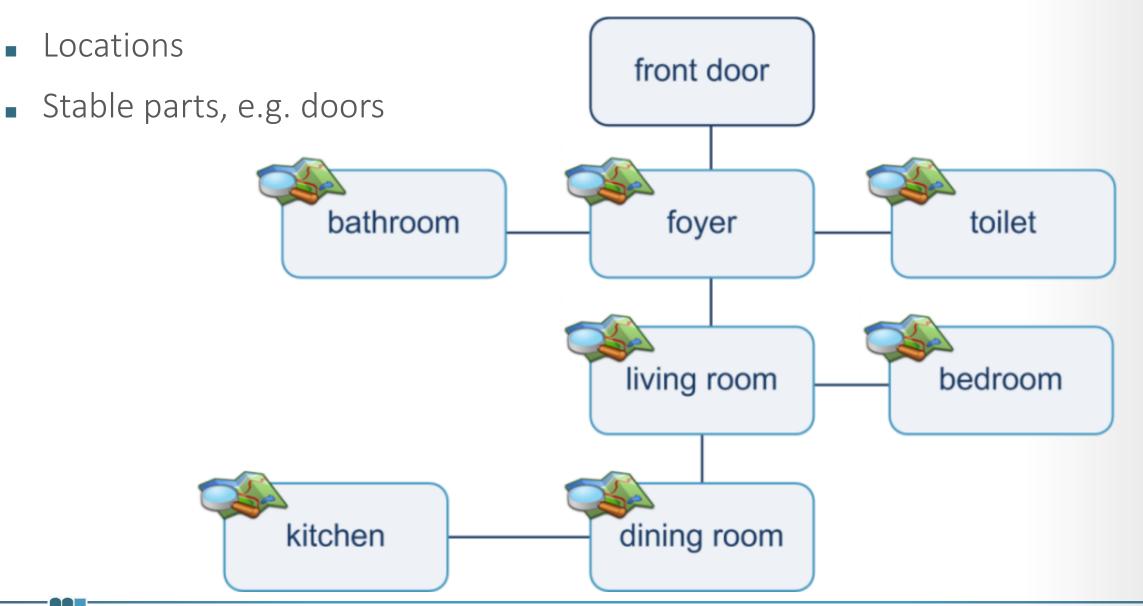
Personal & Social Context

Person & Things

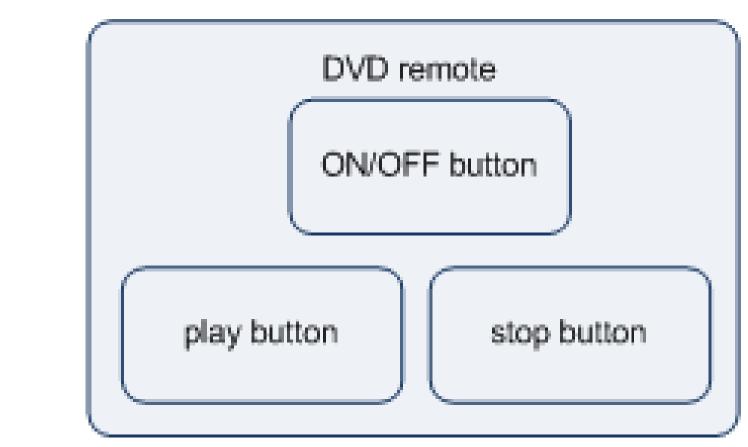

Things can be part-of a person

Sue

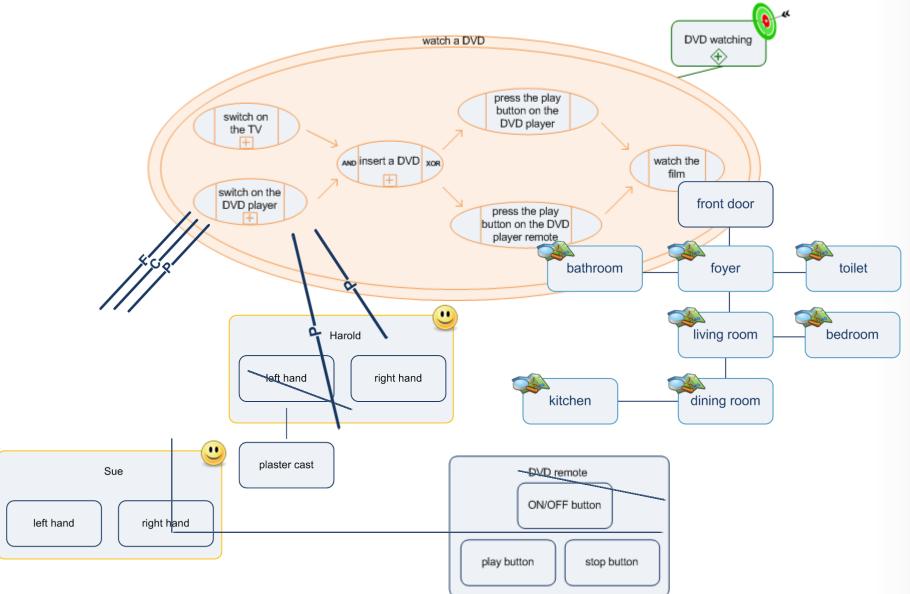
Connections between Things


left hand

Social environment

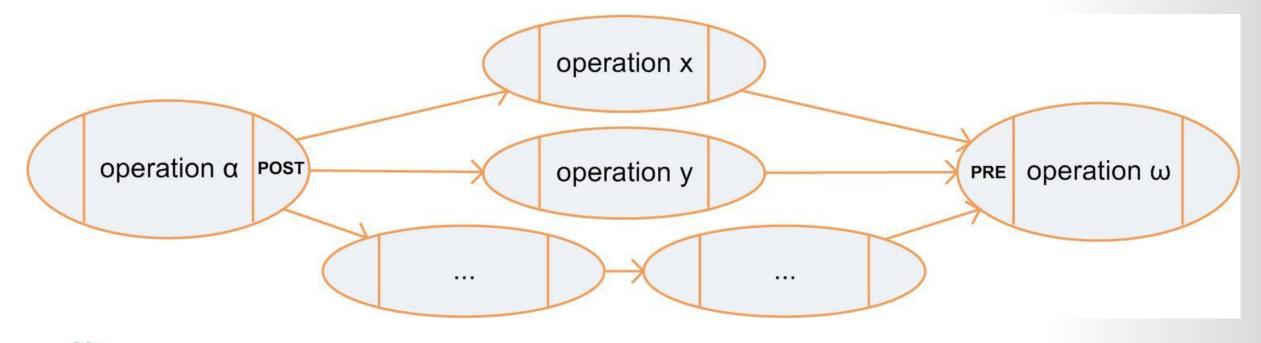

right hand Moody, D.: The "Physics" of Notations: Toward a Scientific Basis for Constructing Visual Notations in Software Engineering. IEEE Trans. Software Eng. 35, 756-779 (2009)

Spatial Context



Environmental Context

- All Relevant Things
 - Take Part in Operations
 - Resources
- Connections
- Properties



User Context

Textual Notations

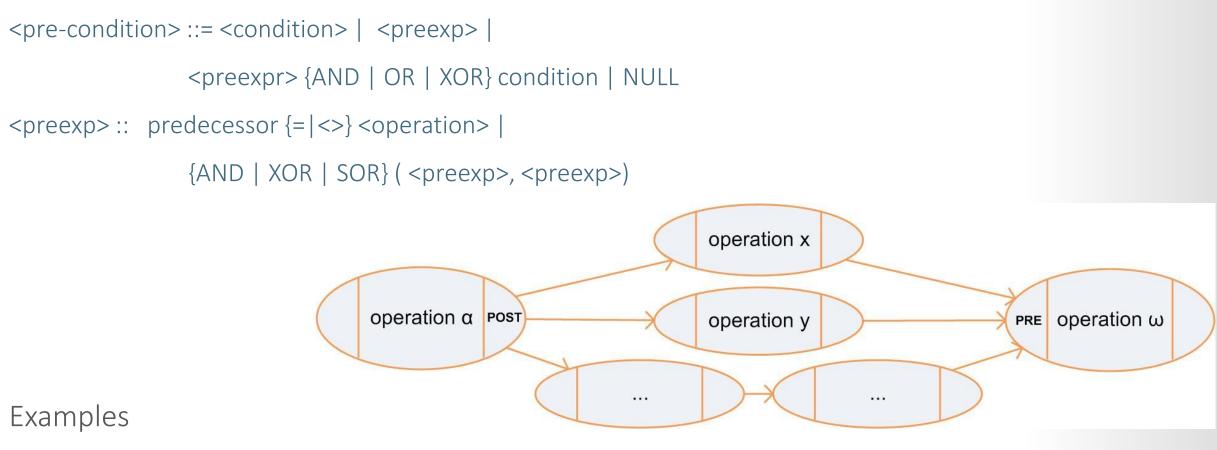
- Conditions
- Pre-Condition
- Post-Condition
- Instructions of Operations

Conditions

Logical expressions that refer to (combinations of)

- (values of) properties of things and connections
- time points, time intervals
- operations

Simplified grammar:


Examples

Harold.status <> ,sleep'

kitchen.temp >= 20 AND window.state= ,closed' AND getTIME <= 14.00.00

Harold is-in ,kitchen' OR Harold is-at (40.75,73.97,12.00)

Pre-Condition

predecessor ='watch a DVD'

AND (predecessor = ,switch on the TV', predecessor = ,switch on the DVDplayer') AND Harold is-in ,dining-room'

SOR

Special operator SOR ("sychronized OR")

Execute the operation if

waitfor { n | ALL | list_of <operation>} preceeding
operations are finished

Example:

SOR "write mail" waitfor 1

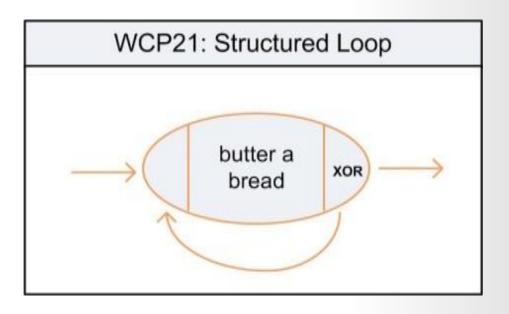
Post-Conditions

reference to subsequent operations

define, which successor operation(s) is/are executed next based on conditions related to the execution of the given operation

Instructions

Procedure to be executed


Statements

Add (Thing x, Connectionname, Thing y) Remove (Thing x, Connectionname, Thing y) Thing Name.Property Name = new Value

If (condition) then [] else [];

Loops

Graphical language level

Reasoning for Support

based on Answer Set Programming (ASP)

- stable model (answer set) semantics of logic programming
- oriented towards (primarily NP-hard) search problems
- time: extensional predicate with a finite domain
- optimization: via minimization and maximization
- adding a constraint A to a logic program P: eliminates the models that violate A from the set of models of P

Obtained Results

- Clingo Solver
- pITX-SP 1.6 plus board (1.6 GHz Atom Z530 and 2GB RAM)
- Number of facts: 10, 30 and 40 facts (max 8 possible choices)
- Execution time in average: 0.4-0.6 Seconds

\Rightarrow fits for ambient assistance purposes

Current Project Activities

Connection to Activity Recognition Systems Transformation of ARS Output into HBMA Input Evaluation of bidirectional benefits

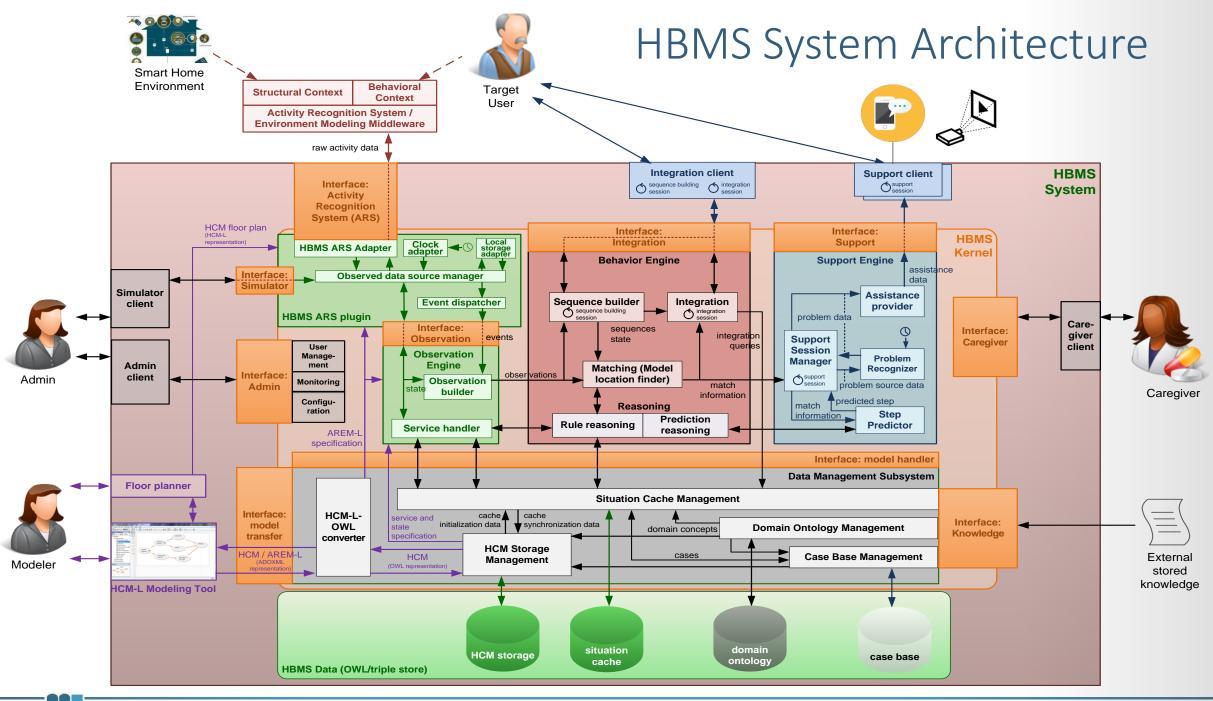
Integration of ARS ourput into the HCM

HCM-L: Specification of the textual language parts

Model visualization

Multimodal support

Todo's


Reasoning for identifying and comparing goals Semantic Analysis:

Uniqueness

Completeness: A model should describe all intended aspects of ist scope and nothing else

- ⇒ Semantic Model Checking
- ⇒ HCM cross checking (all behavioral units)

⇒ "Inconsistency"??

Traditional Generic Modeling Languages

- + versatility in arbitrary domains
- + broad body of experience and knowledge from intensive use and research
 - "law of logistic growth"
- complexity and lack of concept orthogonality corrupts transparency
- hardly manageable for practical use
- misunderstandings and user demotivation