
H.C. Mayr et al. (Eds.): UNISCON 2012, LNBIP 137, pp. 73–86, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Towards Conceptualizing Quality-Related Stakeholder
Interactions in Software Development

Vladimir A. Shekhovtsov, Heinrich C. Mayr, and Christian Kop

Institute for Applied Informatics, Alpen-Adria-Universität Klagenfurt, Austria
shekvl@yahoo.com, {mayr,chris}@ifit.uni-klu.ac.at

Abstract. The paper addresses the issue of organizing quality-related interac-
tion between business stakeholders and software developers relying on estab-
lished common vocabulary. It establishes a conceptual representation for the
process of such interaction. This conceptualization is based on a set of notions
representing software quality and its particular incarnations; they are used to define
the activities of the interaction process. The process is conceptualized on two le-
vels: a coarse-grained level defining the set of generic activities and the conditions
of launching these activities and a fine-grained level describing particular interac-
tion steps in detail. The conceptualization is expected to be shared as a part of up-
coming ontology of stakeholder quality perception and assessment.

1 Introduction

Software processes cannot be successful without involving the respective business
stakeholders. One important category of such involvement concerns collecting stake-
holder opinions and expectations on quality of the prospective system. Unfortunately,
organizing such kind of involvement still remains an open problem mainly because of
the difficulties in establishing the necessary communication channels between the in-
volved parties (on the customer side and on the developer side), especially carrying
quality-related information (quality-carrying channels). This difficulty can be largely
attributed to the fact that these parties speak different languages while talking about
quality and it usually takes a long time to agree on common vocabulary.

We propose to address this problem by establishing the intelligent support for dealing
with quality-related information in the software process. It involves collecting rich de-
scriptions of quality-related issues involving business stakeholders into a semantic repo-
sitory and using this information to predict the reaction of the parties to the future issues
of similar kind or to facilitate coming to the common language by these parties – with a
purpose of maintaining effective quality-carrying communication channels between the
customer side and the developer side. This is a goal for the QuASE project (Quality-
Aware Software Engineering) [19, 25] established in cooperation with two local soft-
ware development companies.

The part of the above problem addressed in this paper is the issue of establishing the
conceptual representation for the process of quality-related stakeholder interaction. We
propose to base such representation on the common conceptualization of the quality
itself which needs to be flexible enough to be able to reflect different semantics acquired

74 V.A. Shekhovtsov, H.C. Mayr, and C. Kop

by quality on different stages of this process and for different participants; we define the
set of concretizations of the quality concepts reflecting the variety of these semantics.

The paper is structured as follows. Section 2 describes the case study and outlines the
applied empirical methodology. Section 3 defines basic quality-related and process-
related concepts and conceptualizes the stages of the interaction process. Section 4 de-
scribes the introduced concepts using a formal set-builder notation. It is followed by the
description of the related work, the conclusions, and the future research directions.

2 The Case Study

We are going to base our explanation on the following case study. We investigate
the software process for the IT firm (company YY) working with the customers in
social care field to make their support systems accessible to the mobile end users (e.g.
social workers). For this category of projects, customer organizations already have
their own established support systems (with IT departments supporting these systems)
which are made extendable by providing the interface which needs to be utilized by
YY to develop their solution. The following research questions, among others, were
stated in a process of the free-form detailed interviewing of the IT staff of the company:

1. Which participants are involved in which stages of the interaction process?
2. Is the quality understood differently on different stages of the interaction process

and by different participants? If so, what are the differences?
3. Is the process represented differently for different categories of stakeholders? If

so, what are the differences?
4. What is the character of the initial preconceptions on quality possessed by the

customers on the start of the negotiations?
5. What could be the distance between the quality initially requested by customer

and the quality specified in a contract after the negotiation?

The following conceptualization is based, in part, on the transcribed answers to these
questions; to obtain this, we applied the basic techniques of coding and conceptualiza-
tion stages of the grounded theory [3, 8]. We do not claim applying the complete
process of grounded theory as defined e.g. in [23]; this will be the target of future
research with a goal of establishing the conceptualization of the whole process of
stakeholder perception of quality; for this purpose, additional cases are planned to be
involved. The obtained evidence is also combined with our own experience and the
knowledge incorporated into the software quality standards i.e. ISO/IEC 25010 [15].

3 The Stakeholder Interaction Process

3.1 Basic Quality-Related Definitions

We start the conceptualization of the process in question from the definition of the
basic concept of quality. This definition follows [24] in relying on the body of work
of formal ontology, represented by DOLCE [21] and CORE [17] ontologies.

 Towards Conceptualizing Quality-Related Stakeholder Interactions 75

In the subsequent description, we use underlined bold italic font with the appropri-
ate capitalization for the concepts introduced for the first time and underlined italic
font for the concepts mentioned after their introduction.

The Concept of Quality. Following and extending our earlier work [24], we define
four components of the concept of quality of the SUD (software under development):

1. A set of involved Quality Characteristics (e.g. “performance” or “reliability”)
understood per DOLCE [21, pp. 16-18] as the categories for perceivable and mea-
surable entities characterizing particular individuals. Every Quality Characteristic
is accompanied by a set of Quality Spaces - conceptual spaces per Gardenfors [11].
These spaces consist of perceivable and measurable Quality Dimensions (e.g.
“throughput” or “response time” for performance) with associated Metrics defining
how the individuals are positioned according to the particular dimension (e.g. “the
metric for calculating the throughput”). Shared Quality Spaces indicate a common
agreement about the way of measuring Quality Characteristic e.g. “the response
time is measured in seconds”; private Quality Spaces indicate the lack of such
agreement e.g. “the reliability can be high or low”.

2. A set of relationships among particular Quality Characteristics (such as those spe-
cifying their hierarchy or interdependencies).

3. A set of relationships among Quality Characteristics and Quality Subjects (partic-
ipants of a quality-related software process activity, e.g. business stakeholders).
Such relationships can e.g. define stakeholder speech acts [17, p. 181] connecting
private quality spaces to stakeholders. In this, they follow CORE by categorizing
ways of perceiving quality by quality subjects as a part of communicated informa-
tion. Examples of speech acts are directive acts (ordering something to be done)
which define precise quality constraints (if the accompanying Quality Space is
shared) or qualitative softgoals [7] if such Quality Space is private.

4. A set of relationships among Quality Characteristics and Quality Objects (ele-
ments of a SUD decomposition the Quality Characteristics to be connected to, e.g.
functional entities defined by a SUD architecture).

An example of the latter two relationships is the constraint “the response time (Quali-
ty Dimension) of the component M (Quality Object) must be below 0.5 sec according
to the stakeholder K (Quality Subject)”. Based on the above definitions, we introduce
the SUD Quality concept as the tuple comprising all four abovementioned sets.

Quality Facets and Incarnations. Based on the above concept, we provide
additional definitions necessary for our conceptualization. In a way of defining more
specific views of quality such as the quality at specific stages of the software process,
as seen by specific stakeholders etc., we define Quality Facet as a SUD Quality
defined for a particular subset of Quality Characteristics, Quality Subjects, and
Quality Objects. Also we define facet-specific set of Quality Spaces.

The Quality Point in Quality Space defines a position of the Quality Object ac-
cording to this space’s Quality Dimensions (e.g. “a position of the component M ac-
cording to the throughput”). After specifying a single Quality Point in every Quality
Space defined for a Quality Facet and taking a set of all such Quality Points we can

76 V.A. Shekhovtsov, H.C. Mayr, and C. Kop

define the Quality Incarnation by connecting this set to a specific software process
activity and a specific purpose to serve. It concretizes the SUD Quality by conceptua-
lizing particular quality levels at particular stages of the software process. An example
of such incarnation can be “the (particular) performance and reliability of the compo-
nent M perceived by the stakeholder K at the start of the negotiation”. This concept is
illustrated on Fig.1 together with the concepts it depends upon.

Fig. 1. Basic quality-related concepts

3.2 Basic Interaction-Related Definitions

Quality Realms. We propose to treat all the quality concepts emerging on different
stages of the interaction process and all the interactions with stakeholders involving
these quality concepts as belonging to specific Quality Realms defined as particular
subdomains (fields of interest, concerns) in the software engineering domain
uniformly influencing the treatment of the software quality for all the involved
activities and participants. The quality concepts emerging at different stages of the
interaction process belong to two Quality Realms:

1. User Satisfaction Realm for the relevant activities and participants related to the
interests of the SUD stakeholders; for this realm, the quality is treated from the
point of view of their satisfaction (quality in use [14, 15]);

2. Implementation Realm for the relevant activities and participants related to the
interests of the IT people implementing the SUD; here, the quality is treated as the
set of objective characteristics of the system (e.g. its external quality [13, 15]).

Process Participants. For our case, we define three main categories of participants:

 Towards Conceptualizing Quality-Related Stakeholder Interactions 77

1. Business Stakeholders do not necessary have an IT experience; they are end users
of the SUD. They do not always interact with the Developers directly. Both their
understanding of quality and their role in the quality interaction process belong to
the User Satisfaction Realm.

2. Developers are the IT professionals responsible for developing of the software
system itself. Both their understanding of quality and their role in an interaction
process belong to the Implementation Realm.

3. Software Integrators are the IT professionals responsible for running the software
platform deployed at the customer organization’s site, they perform integration of
the solutions provided by Developers into that platform. This role is twofold: on
the one hand, they perceive the quality as IT professionals (i.e. as belonging to the
Implementation Realm), on the other hand, they are the prospective customers of
the SUD so their participation in quality-related stakeholder interaction belongs to
the User Satisfaction Realm.

As we can see, there are two Stakeholder Roles which need to be defined as belong-
ing to the particular Quality Realm:

1. related to the stakeholder perception of quality (distinguishing Business Thinkers
and IT Thinkers);

2. related to the stakeholder participation in the interaction process (distinguishing
Business Actors and IT Actors).

Quality realms and stakeholder roles are depicted on Fig.2.

Fig. 2. Quality realms and stakeholder roles

3.3 Coarse-Grained Quality Awareness Process

Continuous Quality Awareness. Before elaborating the quality negotiation process,
it is necessary to explain its place in the complete development lifecycle. To do this,
we need to explain the concept of the Continuous Quality Awareness defined as the

Customer Side Developer Side

User Satisfaction Realm Implementation Realm

Stakeholder Roles

Quality Incarnations

Software Process Activities

Business
thinkers

Business
actors

IT thinkers

IT actors

Quality as seen by business people Quality as seen by IT people

Quality
Perception

Behavior

Participants in Case StudyBusiness
stakeholders

Developers
Software integrators

Implement

validate

agree
in mind

sign
contract

78 V.A. Shekhovtsov, H.C. Mayr, and C. Kop

Developers ability to check, throughout the software process, the desired SUD Quality
(from the Business Actor point of view) against the current implementation stage.

To facilitate Continuous Quality Awareness, it is necessary to establish the set of
Awareness Support Activities to be performed (triggered) continuously on different
software process to provide the means of getting the correct stakeholder opinions on
quality. Quality-related interaction can be considered such an activity.

Process Outline. In defining the process of interaction, we will proceed on two
levels. First, we define the coarse-grained interaction process (Awareness Support
Process). This process extends the general software process by introducing a means
of triggering the more specific quality negotiation activities if necessary.

Awareness Support Process relies on the concept of the Interaction Trigger. Such
trigger corresponds to some event which initiates executing the set of actions for the
quality-related interaction. We can distinguish three possible ways of defining such
triggers:

1. Making the set of triggers correspond to the predefined points in the software
process, e.g. they can be fired at its milestones; this way, the exact time of firing is
known beforehand;

2. Making the triggers correspond to the predefined events in the software process,
e.g. defining them as firing after making all important design decisions (e.g. “in-
troducing new caching solution which could affect the performance”); this way,
though the exact time of firing cannot be known in advance, we can know in ad-
vance the conditions of firing; these triggers are fired at the changes of the SUD
State understood as the set of internal variables affecting SUD Quality.

3. Defining ad-hoc (or on-demand) triggers that can be fired on demand of the partic-
ipating actor; this way, neither the time nor the condition can be known in advance;
with such triggers, real Continuous Quality Awareness can be achieved (stakehold-
ers opinions on quality can be taken into account at any time).

Now we can define the set of actions to be executed on firing the interaction trigger.
We distinguish four basic coarse-grained activities:

1. Preparation Activity: the necessary preliminary actions are performed (e.g. initial
version of the SUD Quality is produced);

2. Negotiation Activity: the sides agree to the particular incarnation of SUD Quality
(Pre-Implementation Negotiation);

3. Implementation Activity: as a result of the implementation activities the SUD is
transitioned to some next state possessing the particular SUD Quality;

4. Checking Activity: the implemented SUD Quality is compared against the nego-
tiated one; if necessary, Post-Implementation Negotiation is performed; it is also
possible to perform e.g. checking the direction of overall quality trend (indicated
by e.g. the distance between the initial and agreed versions of SUD Quality).

We can distinguish two different sequences of coarse-grained activities depending on
the type of the Interaction Trigger. For the triggers of the first and second kind, i.e.
with firing conditions corresponding to the structure of the software process (e.g. the
development milestones or design decisions) the flow of activities is depicted on

 Towards Conceptualizing Quality-Related Stakeholder Interactions 79

Fig.3. Here the Checking Activity is executed at the end of the sequence (after the
Implementation Activity) to check if the result of the implementation achieved the
agreed SUD Quality.

Fig. 3. Coarse-grained activities to be executed at milestone or design decision

For on-demand triggers, the sequence of activities is depicted on Fig.4. Here it is
necessary to execute the Checking Activity on the trigger event first to check if the
current SUD Quality corresponds to its agreed values. In this situation, both the Nego-
tiation Activity and the Implementation Activity need to be executed only if the check
was not successful.

Fig. 4. Coarse-grained activities to be executed on demand

3.4 Preparation Activity and Corresponding Quality Incarnations

Before describing this activity in detail, we describe the corresponding Quality
Incarnations. We start with those belonging to the User Satisfaction Domain. The
informal schema of the fine-grained activities and the corresponding Quality
Incarnations is depicted on Fig.5.

Expected Quality and Its Boundaries. The Expected Quality can be defined as the
Quality Incarnation representing an image of the SUD Quality that is conceived of by
the individual Business Actor as a negotiable quality he/she wants the final SUD
version to provide. Such Quality Incarnation needs to be taken into account every
time when the software process deals with Business Actors’ opinions, but it exists
only in a Business Actor’s mind (e.g. “now I (the stakeholder K) think that the
response time as seen through the user interface (UI) element L may not exceed 0.5
sec”.) It can change throughout the interaction process as a result of the evolution of
Business Actor’s quality vision. It belongs to different Quality Realms for the
interactions with Business Thinkers and IT Thinkers.

Expected Quality Boundaries are the Quality Incarnations reflecting the fact that
the Business Actor enters the process of interaction with specific quality-related pre-
conceptions in mind constituting the Expected Quality permissible range; it depends
on the Business Actor’s capabilities to accept the SUD Quality. The Best-Case

80 V.A. Shekhovtsov, H.C. Mayr, and C. Kop

Quality is the higher bound of the Expected Quality: if the SUD Quality as perceived
by Business Actor equals or exceeds the Best-Case Quality, the particular SUD ver-
sion can be immediately accepted as completely satisfying the Business Actor; no
additional interactions are necessary. The Last-Resort Quality is the lower bound of
the Expected Quality: if the SUD Quality is below the Last-Resort Quality boundary,
the SUD version can be immediately rejected as dissatisfying the Business Actor: e.g.
“if I (the stakeholder K) will get the response time seen through the UI element L of
above 15 sec I will think twice about dealing with these developers again”.

Fig. 5. Fine-grained interaction activities and corresponding quality incarnations

Proposed and Example Quality and Their Boundaries. We define our
conceptualization for the case when the interaction with Business Actor is performed
from the Developer side by making the Business Actor experience some version of
quality which could be then the subject of negotiation: a Proposed Quality. It denotes
a set of values for quantified quality attributes of the SUD reflecting the current state
of its development. The SUD is expected to have that quality if implemented exactly
as defined at the given development stage. Proposed Quality can be produced based
on a (e.g. simulation) model, a system prototype, or the complete system version. An
example could be “the vertical prototype (or the performance simulation) of the
component M shows the response time of 0.34 sec in the context T”).

From the Business Thinker side, it is difficult to experience and assess the Pro-
posed Quality directly as it is just a set of (objective) values which reflects the current
state of the SUD (external quality in terms of [13, 15]), so it belongs to the Implemen-
tation Realm (e.g. “the component M is the element of the SUD architecture not di-
rectly visible to the stakeholder K”). Following [22], we propose to map this Quality
Incarnation into the one belonging to the User Satisfaction Realm: an Example
Quality. Its values need to reflect the quality in use according to e.g. ISO/IEC 9126-4
[14] and the future version of ISO/IEC 25024; they can be experienced by Business

Best‐case
quality

Business
Actor

Developer

Example
quality

Last‐resort
quality

Accepted
quality

Contracted
quality

Required
quality

Guaranteed
quality

is provided as NFR

implement

Feasible
quality

Proposed
quality

provideagree
in mind

Impemented
quality

Delivered
quality

agree
formally

Implementation
realm

User satisfaction
realm

Is delivered to

Expected
quality

experience

map

map

map

Quality
incarnation
Action

Quality
incarnation
Action

define
in mind

formalize

Is between

check against

 Towards Conceptualizing Quality-Related Stakeholder Interactions 81

Thinker naturally (e.g. “map the response time of the component M into the response
time as shown through the UI element L which is understandable by the stakeholder
K”). This mapping is not necessary in case of interacting with IT Thinkers.

Proposed Quality boundaries are the Quality Incarnations reflecting the range of
the Developer capabilities to produce the SUD with the particular level of quality.
The higher bound (Feasible Quality) reflect the best quality that can be produced
given the available resources, whereas the lower bound (Guaranteed Quality) reflects
the level of skills and self-esteem of Developers which makes producing the SUD
with lower quality unacceptable for them.

Preparation Activity. Launching this activity entails executing the following fine-
grained activities necessary for the preparation of the participants to the quality-
related stakeholder interaction.

1. Establish Expected Quality Boundaries: Business Stakeholder establishes in
his/her mind both Best-Case Quality and Last-Resort Quality.

2. Establish Proposed Quality Boundaries: Developer learns about or establishes
both Feasible Quality and Guaranteed Quality;

3. Produce Initial Proposed Quality: Developer produces some version of Proposed
Quality (through e.g. SUD prototype) falling between its boundaries; it is then
mapped into Example Quality if necessary; to be concise, below we refer to such
quality (either mapped or unmapped) as Example Quality.

3.5 Negotiation Activity

Executing the Negotiation Activity entails executing the set of fine-grained activities:

1. Experience Proposed Quality: the interaction begins from the Developer making
Business Actor experience the produced Example Quality, after this, Business Ac-
tor compares it in his/her mind to the Expected Quality boundaries. As a result, two
mutually exclusive activities can be executed:

− Accept the SUD State: If the Example Quality exceeds the Best-Case Quality,
the SUD state possessing the particular Example Quality is accepted without
further interactions; such experience can be of the great service to the project as
it establishes the feeling of trust between Business Actors and Developers.

− Reject the SUD State: if the Example Quality falls below the Last-Resort Qual-
ity, the particular version of the SUD is rejected without the possibility of fur-
ther interaction; it can be damaging to the whole project.

2. Negotiate Specific Quality: If the Example Quality falls into the acceptable Ex-
pected Quality range, the process follows the Negotiation Iterations; on every such
iteration, the following activity is performed:

− Adjust the Proposed Quality and Expected Quality: Developer makes Business
Actor experience the new version of Example Quality and Business Actor assesses
his/her experience again; in doing this, every side tries to insist on some preferable
quality values: in particular, Developer tries to keep the Example Quality closer to

82 V.A. Shekhovtsov, H.C. Mayr, and C. Kop

the Guaranteed Quality to spend fewer resources, whereas Business Actor tries to
keep the Expected Quality closer to the Best-Case Quality as it is better corre-
spond to what he/she has in mind initially. Throughout this iterative process both
sides learn about the capabilities of each other: as a result, their Quality Incarna-
tions converge to the agreement point. It could look like: “the developers show the
stakeholder K (through the UI element L) the vertical prototype of the component
M with a (UI-mapped) response time of 0.7 sec, K does not quite like it, so they
produce a new version with a response time of 0.5 sec and K agrees on that”.

3. Agree Upon Quality: the negotiation process eventually ends with agreeing upon a
version of the Example Quality shown to the Business Actor: the Accepted Quality.

The above activities are defined for the case when the negotiation between Business
Actor and Developer takes place through a sequence of Example Quality incarnations
shown to Business Actor and an evolution of the Expected Quality incarnations in
Business Actor’s mind; in reality, simpler sets of activities could be performed (e.g.
missing the second step so the initial Example Quality is either immediately accepted
or immediately rejected). Main concepts related to this activity are shown on Fig.6.

Fig. 6. Main concepts of the stakeholder negotiation activity

3.6 Implementation and Checking Activities

Contracted and Required Quality. As a result of the iterative interactions, the sides
agree on Accepted Quality. Before communicating it to the Developer, it is necessary
to transfer it into the official, documented form: a Contracted Quality (e.g. “the

Negotiation process

1 * 1

Process start Process iteration Process closing

Accepted Quality

+result

Contracted Quality

+result

Req. Spec.
Contract

Proposed Quality Expected Quality

Business
Stakeholder

+initial input +initial input

documented to

Software
Integrator

IT-Stakeholder
Domain
Stakeholder

agree

agree

provide
have in mind

Feasible Quality Guaranteed Quality

Best-case Quality

Last-resort Quality

*
+revised input

+revised input

assess

SUD state

0..1

1
0..1 0..1 0..1 0..1 0..1

1

1 1 1 1 1
1

1
1 1

1

1
1

1

1
0..1

0..1 0..1 0..1 0..1 0..1 0..1 0..1

0..1 0..1

0..1

0..1

0..1

0..1

0..1

1

triggers

SUD state
change
leads to

1

1

 Towards Conceptualizing Quality-Related Stakeholder Interactions 83

contract states that the response time seen through the user interface element L must
not exceed 0.5 sec”). For interacting with Business Stakeholders, it needs to belong to
the User Satisfaction Realm, this is not necessary for the interaction with IT Thinkers.

In case of Business Stakeholder-involving interaction, the Contracted Quality cannot
be directly used to guide the software development activities to be performed by
Developers. To do so, it needs to be mapped into Required Quality belonging to the
Implementation Realm, it can be seen as the quality expressed in the requirement
specification contract as a set of SUD non-functional requirements (NFR); so this
mapping can be seen as a part of the NFR elicitation process (e.g. “the NFR R states
that the response time of the component M must not exceed 0.5 sec”). For the interac-
tion with IT Thinkers, Contracted Quality can be directly used as Required Quality.

Implementation Activity and Related Quality Incarnations. After the Required
Quality was defined and made available to the Developers, the necessary
implementation-related actions are performed as a part of coarse-grained
Implementation Activity. As a result, the SUD transitions itself into the new
development-related state (corresponding to e.g. the milestone). We refer to this state
as possessing the Implemented Quality belonging to the Implementation Realm; in
case of interaction with Business Stakeholders it needs to be mapped into the User
Satisfaction Realm to obtain the Delivered Quality (e.g. “we delivered the SUD
version with the response time of 0.45 sec as seen through the UI element L”).

Checking Activity. After the Implementation Activity is completed (or right on a
trigger event in case of asynchronous launching of the interaction), the obtained
Delivered Quality needs to be experienced by the Business Actors as a part of the
Checking Activity. Here, various checks can be performed, the most common one is
checking if Delivered Quality corresponds to the Contracted Quality. If this is the
case, next round of the Awareness Support Process can be started by executing the
Preparation Activity aligned with the next SUD State Change (e.g. with the process
stage bounded by the next milestone), otherwise it corresponds to the major
development problem with a need of emergency actions.

4 Formal Description

In this section, we use set-builder notation to describe the introduced concepts. A SUD

Quality is defined as a tuple (, ,) , (), (,), (,)q s fQ C U F C R C R C U R C F= , where

}{ (), ()C c P c S c= = is a set of involved Quality Characteristics (comprised of a set

of properties ()P c and a set of Quality Spaces ()S c), (){ }()q qR C r C C′= ⊆ is a set

of relationships among Quality Characteristics (C’ is a set of involved characteristics, C

is the set of available characteristics), (){ }(,) ,s sR C U r C C U U′ ′= ⊆ ⊆ is a set of rela-

tionships among Quality Characteristics and Quality Subjects (U’ is a set of involved

subjects, U is the set of available subjects), (){ }(,) ,f fR C F r C C F F′ ′= ⊆ ⊆ is a set

84 V.A. Shekhovtsov, H.C. Mayr, and C. Kop

of relationships among Quality Characteristics and Quality Objects (F’ is a set of in-
volved objects, F is the set of available objects).

A Quality Facet is defined as (), ,BS SI ITSQ Q C U U U U FC F= ⊆ ⊆ ∪ ∪ ⊆ ,

where C and F are the sets of existing Quality Characteristics and Quality Objects,
UBS, USI, UITS are the sets of participants belonging to the particular categories. In

addition, { }() () (), ()S Q S c c P c S c C= = ∈ defines a facet-specific set of Quality

Spaces.
A Quality Incarnation for the interaction process activity a is defined as a tuple

{ }() (()), () () ,I Q P I Q v s v S Q a A= ∈ ∈ , where (())P I Q is the set of properties, A is

a set of defined process activities, ()s v is a Quality Space for a Quality Point v.

5 Related Work

Our research is related to both quality conceptualization and software process concep-
tualization so we need to consider the state of the art in these two research fields.

We published a detailed literature review of the available quality conceptualization
techniques in [24], so we refer to this paper for the complete treatment of this issue.
Among these techniques, it is possible to distinguish model-based [6, 9, 10, 27, 28] and
ontology-based [16-18, 20] approaches, for the purpose of our research we are mostly
interested in the latter. We found that these techniques are not completely suitable for our
problem as they mostly concerned with conceptualizing the quality itself. They, as a rule,
do not relate the proposed conceptualizations to the software process activities as seen
from the both sides of the development process while performing the quality-related
negotiation (e.g. they do not include the concept of quality realm or conceptualize the
inter-realm mappings, also, the negotiation support is limited).

Software process conceptualization techniques [1, 2, 4, 26], on the other hand, of-
ten miss appropriate quality treatment: they do not include the notions of quality re-
lated to different software process activities. Among these techniques, we distinguish
the work by Adolph and Kruchten [4] where they propose the conceptualization of the
software process centering on the notion of the negotiation between the sides of the
development process with a purpose of reaching common understanding; being
the high-level conceptualization, it does not include the specifics of the negotiation
process related to quality-carrying communication. We can see our research as an
extension to that work focusing on establishing quality-carrying communication
channels.

6 Conclusions and Future Work

In this paper, we established the conceptualization for the process of quality-related
stakeholder interaction in software development. As basic notions, it provides the
concept of SUD Quality (based on the notions of formal ontology) together with the
conceptual notions of Process Participant, Quality Realm, and the set of quality
values (Quality Incarnation). The proposed process conceptualization is based on the

 Towards Conceptualizing Quality-Related Stakeholder Interactions 85

notion of Continuous Quality Awareness defining the set of interaction activities as an
extension of the generic software process making possible on-demand stakeholder
involvement with a purpose of checking the current SUD State. It defines the neces-
sary process activities, the relevant workflow, and Quality Incarnations related to
these activities. Its advantages are as follows:

1. It establishes a common ground for organizing the knowledge about the specifics
of establishing quality-carrying communication channels into the semantic reposi-
tory – a knowledge base. This information could be reused directly while organiz-
ing future interactions; it also could be used to predict the behavior of the parties
while encountering similar quality-related issues;

2. It facilitates coming to a common language by different parties in the software
process by providing the set of common quality-related concepts that could be uti-
lized by all these parties while participating in quality-related interaction activities;

3. It can help in establishing process-oriented support solutions facilitating quality-
related stakeholder involvement into the software process.

In future, in a framework of the QuASE project [19, 25], we plan to integrate the pro-
posed conceptualization of the interaction process into a common ontology (QuOntol-
ogy) which has to incorporate the knowledge about software quality and its perception
by business stakeholders and developers, the processes of stakeholder quality assess-
ment, the ways of producing quality to be proposed to stakeholders and other knowl-
edge related to this domain. After establishing QuOntology, following the Ontology-
based Software Engineering paradigm [5, 12], we plan to make it play a central role in
implementing the tool support for the stakeholder involvement into the software proc-
ess by e.g. facilitating semantic-based reuse of the information about quality-related
interactions involving business stakeholders or the prediction of the stakeholder behav-
iour for the future interactions of this kind.

References

1. Acuna, S.T., Juristo, N. (eds.): Software Process Modeling. Springer, Heidelberg (2005)
2. Acuna, S.T., Sanchez-Segura, M.I. (eds.): New Trends in Software Process Modeling.

World Scientific, New York (2006)
3. Adolph, S., Hall, W., Kruchten, P.: Using grounded theory to study the experience of

software development. Empirical Software Engineering 16, 487–513 (2011)
4. Adolph, S., Kruchten, P.: Reconciling Perspectives: How People Manage the Process of

Software Development. In: AGILE 2011, pp. 48–56. IEEE, New York (2011)
5. Bachmann, A., Hesse, W., Ru, A., Kop, C., Mayr, H.C., Vohringer, J.: A Practical Ap-

proach to Ontology-based Software Engineering. In: EMISA 2007. LNI, vol. P-119,
pp. 129–142. GI, Bonn (2007)

6. Carvallo, J.P.: Systematic Construction of Quality Models for COTS-Based Systems. PhD
Thesis. Universitat Politècnica de Catalunya, Barcelona (2005)

7. Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-Functional Requirements in Software
Engineering. Kluwer Academic Publishers, Boston (1999)

8. Coleman, G., O’Connor, R.: Investigating software process in practice: A grounded theory
perspective. The Journal of Systems and Software 81, 772–784 (2008)

86 V.A. Shekhovtsov, H.C. Mayr, and C. Kop

9. Cote, M., Suryn, W., Georgiadou, E.: Software Quality Model Requirements for Software
Quality Engineering. In: 14th International Conference on Software Quality Management,
Quebec, pp. 31–50 (2006)

10. Deissenboeck, F., Juergens, E., Lochmann, K., Wagner, S.: Software quality models: Pur-
poses, usage scenarios and requirements. In: WoSQ 2009, pp. 9–14. IEEE, New York
(2009)

11. Gärdenfors, P.: Conceptual Spaces: A Geometry of Thought. MIT Press, Cambridge
(2000)

12. Hesse, W.: Ontologies in the Software Engineering process. In: Proc. EAI 2005. Ceur-
WS.org, vol. 141, pp. 3–16 (2005)

13. ISO/IEC 9126-2:2003: Software Engineering – Product Quality – Part 2: External Metrics.
ISO (2003)

14. ISO/IEC 9126-4:2004: Software Engineering – Product Quality – Part 4: Quality-in-Use
Metrics. ISO (2004)

15. ISO/IEC 25010:2011: Systems and software engineering – Systems and software Quality
Requirements and Evaluation (SQuaRE) – System and software quality models. ISO
(2011)

16. Jureta, I.: Essays in Information Management: Contributions to the Modeling and Analysis
of Quality in Information Systems Engineering, PhD Thesis. Department of Business Ad-
ministration. University of Namur (2008)

17. Jureta, I., Mylopoulos, J., Faulkner, S.: A core ontology for requirements. Applied Ontolo-
gy 4, 169–244 (2009)

18. Kabilan, V., Johannesson, P., Ruohomaa, S., Moen, P., Herrmann, A., Ehlfeldt, R.M.,
Weigand, H.: Introducing the Common Non-Functional Ontology. In: Gonçalves, R.J.,
Müller, J.P. (eds.) Enterprise Interoperability II, pp. 633–645. Springer, Heidelberg (2007)

19. Kaschek, R., Kop, C., Shekhovtsov, V.A., Mayr, H.C.: Towards Simulation-Based Quality
Requirements Elicitation: A Position Paper. In: Rolland, C. (ed.) REFSQ 2008. LNCS,
vol. 5025, pp. 135–140. Springer, Heidelberg (2008)

20. Masolo, C., Borgo, S.: Qualities in formal ontology. In: Foundational Aspects of Ontolo-
gies Workshop at KI 2005, Koblenz, pp. 2–16 (2005)

21. Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A.: The WonderWeb Library
of Foundational Ontologies. WonderWeb Deliverable D18. Ontology Library (final). .
ISTC-CNR, Trento (2003)

22. Raubal, M.: Formalizing Conceptual Spaces. In: Proceedings of Formal Ontology in In-
formation Systems, FOIS 2004, pp. 153–164. IOS Press, Amsterdam (2004)

23. Sharmaz, K.: Constructing Grounded Theory. Sage Publications, Thousand Oaks (2006)
24. Shekhovtsov, V.A.: On the evolution of quality conceptualization techniques. In: Kaschek, R.,

Delcambre, L. (eds.) The Evolution of Conceptual Modeling. LNCS, vol. 6520, pp. 117–136.
Springer, Heidelberg (2011)

25. Shekhovtsov, V.A., Mayr, H.C., Kop, C.: Stakeholder Involvement into Quality Definition and
Evaluation for Service-Oriented Systems. Accepted for Publication in Proc. ICSE 2012
Workshops. IEEE, New York (2012)

26. Software Process Engineering Metamodel (SPEM) 2.0. OMG (2008)
27. Tian, J.: Quality-Evaluation Models and Measurements. IEEE Software 21, 84–91 (2004)
28. Wagner, S., Lochmann, K., Winter, S., Goeb, A., Klaes, M.: Quality models in practice: A

preliminary analysis. In: ESEM 2009, pp. 464–467. IEEE, New York (2009)

View publication statsView publication stats

https://www.researchgate.net/publication/286246636

