
Stakeholder Involvement into Quality Definition and Evaluation

for Service-Oriented Systems

Vladimir A. Shekhovtsov, Heinrich C. Mayr, Christian Kop

Application Engineering Group, Institute of Applied Informatics,

Alpen-Adria-Universität Klagenfurt, Klagenfurt, Austria

shekvl@yahoo.com, {heinrich, chris}@ifit.uni-klu.ac.at

Abstract—The paper addresses the matter of quality in the

software process for service-oriented systems. We argue for the

need of involving the users/stakeholders into the specification

and evaluation of quality (requirements) and we develop means

for supporting such an involvement. For this purpose we

introduce classifications of user and quality types and as a basis

for the characterization of evaluation cases.

Keywords-business stakeholder involvement; quality

assessment; software process; empirical evidence; service-

oriented systems

I. INTRODUCTION

Software processes for service-oriented systems cannot be
successful without involving the respective business
stakeholders. One important category of such involvement
concerns collecting stakeholder opinions and expectations on
quality of the prospective system: If the stakeholders do not
have a chance to bring in their quality expectations early in
the software development lifecycle, these can be easily lost -
leaving the stakeholders dissatisfied late in the development
lifecycle when it is costly to fix.

Organizing and supporting such kind of involvement still
remains an open task for service-oriented systems:

1. It is difficult for stakeholders without IT experience to
express their expectations on the quality of the system under
development (SUD) if they cannot experience it in the
appropriate context; without such experience, they are forced
to be rough in their opinions formulating them as e.g. “the
services must be reliable” etc..

2. The process of assessing service quality needs to be
performed for different service compositions and for different
cases of anticipated or implemented interaction of the services
with the environment; this is a complex task as it is difficult to
invent the service compositions and interaction scenarios “on
the fly” without necessary support.

3. We know of no established process and tool support of
quality-related interaction between business stakeholders and
IT people relying on established common vocabulary.

In this paper, we address the need for facilitating the user
evaluations [1] as a part of the approach to address the above
problems. This approach is planned to be developed as a part
of the QUASE-IOS project (short for QUality-Aware
Software Engineering for the Internet of Services) established
in cooperation with two local software development
companies.

The paper is structured as follows. Section 2 describes the
QUASE-IOS project. Section 3 introduces the cases for
QUASE-IOS user evaluation activities, lists their attributes,

and outlines the directions for the possible discussions related
to such activities; it is followed by conclusions.

II. QUASE-IOS PROJECT DESCRIPTION

The QUASE-IOS project (its topic was introduced in [2,
3]) aims at acquiring and formalizing knowledge about the
perception and assessment of software quality by business
stakeholders. This should facilitate the quality-related
involvement of stakeholders into software processes targeting
service-oriented systems.

Consequently, the project focuses on the following fields
of research and development activities: ontological
engineering, continuous quality awareness, model-based
process support, collecting stakeholder evidence and forming
quality awareness data.

Ontological engineering activities consist in acquiring and
organizing the knowledge on quality-related software process
activities into a common ontology (the Ontology of
Stakeholder Quality Perception and Assessment, StakeQPA).
In particular, that ontology has to incorporate the knowledge
about software quality and its perception by stakeholders and
IT people, the processes of stakeholder quality assessment, the
ways of producing quality to be proposed to stakeholders,
quality-observing contexts etc.. Thus it plays a central role
when following the Ontology-based Software Engineering
paradigm [4, 5].

Continuous quality awareness is defined as the software
engineers’ ability to check, throughout the software process,
the desired quality of the SUD against the current realization
stage (Fig.1). To facilitate such awareness, we need to
formalize the set of awareness support processes to be
performed continuously on different software process stages
(Fig.2). These processes should provide the means for getting
the stakeholders’ quality expectations and forming the
awareness support data.

In particular:
1. Service quality values should be formed in a way

accessible to business stakeholders (e.g. simulated) and
presented to them interactively in the context of the system
usage;

2. Stakeholders should experience service qualities in
usage contexts corresponding to their roles, and assess this
experience using the specific scale;

3. These assessments incorporate software process
activities like non-functional requirements (NFR) elicitation
or the evaluation of design decisions.

For the determination of processes for continuous quality
awareness we distinguish between expected and proposed
quality.

978-1-4673-1859-4/12/$31.00 c© 2012 IEEE USER 2012, Zurich, Switzerland49

continuously
throughout
the software
process

Software
engineer

Business
stakeholder

Check the desired
SUD quality

Check the position
of the SUD w.r.t. this quality

Express the desired

SUD quality

Assess the position
of the SUD w.r.t. this quality

Figure 1. Continuous quality awareness

 Business
stakeholder

Software
engineer

software process

awareness
support
process

Quality-aware

participation

Quality
assessment

integra-
tion

Figure 2. Integrating the awareness support into the software process

The expected quality (EQ) is defined as a quality
perception a business stakeholder wants the final SUD version
to provide. It needs to be considered whenever the software
process deals with stakeholder opinions, but it exists only in a
stakeholder’s mind. Despite this “ephemeral” character, it has
an important influence on the software process. For example,
such quality indirectly but significantly affects stakeholders’
decisions on the outcome of the whole project or on its
milestones.

The proposed quality (PQ) denotes a set of values for
quantified SUD quality attributes reflecting the current state of
SUD development and represented in a form suitable for the
perception by stakeholders. The s is expected to have that
quality if implemented exactly as defined at the given
development stage. It can be perceived by stakeholders both
directly (via their senses) and indirectly (e.g. through the
verbal description). There are several ways to produce
proposed quality: from a (e.g. simulation) model, from a
system prototype, from the complete system version.

Model-based process support follows the situational
method engineering paradigm [5] and aims at composing a
QUASE-IOS runtime model QRM as the backbone of a
common QUASE-IOS runtime process QRP for supporting
quality-related decisions. I.e., launching QRP means to enact
QRM.

In this paper, we introduce the prospective user
evaluations in the context of process support for involvement-
related tasks.

Fig.3 depicts the QUASE-IOS runtime process First, the
appropriate awareness support activity such as SUD state
evaluation or NFR elicitation (see below) is invoked. In
parallel, the software engineer is requested to provide the
necessary information (such as the values of quality-
influencing factors). When the values are set, the system
prepares itself to execute the EQ collecting activity by
launching the EQ collecting process, which incorporates the
stakeholders, too.

To reveal EQ in contexts, in [2, 3] we proposed to
represent such contexts by an interactive usage process
defining the sequences of actions for stakeholder interaction
sessions. Every such process defines the particular usage
context and is presented by the EQ forming process to the
stakeholder belonging to his/her particular role. Its input is the
set of values for all the SUD services.

The outputs of these sub-processes include the set of all
PQ values that are relevant for the particular context and the
set of the corresponding EQ values revealed by the
participating stakeholders.

Whilst a context-level usage process is performed service-
level revealing processes handle the forming of PQ (e.g. by
simulation) and the revealing of EQ (e.g. by assessment)..
Their inputs are the values of the factors influencing the SUD
quality (e.g. the expected user load).

An EQ revealing process organizes the interactions with
stakeholders to reveal the particular EQ characteristics. It can
incorporate human-computer interaction, human-to-human
interaction (e.g. the analyst delivers the PQ value to the
stakeholder and asks for assessment), and empirical method-
based interaction (using questionnaires etc.).

A PQ forming process is to present the corresponding PQ
to a revealed EQ. The particular implementation depends on
the given quality characteristic and project type. Its input is a
set of values for PQ-influencing factors. We plan to establish
two categories of such processes: backed by real software
solutions and based on simulation models for SUD qualities.

Forming the awareness data is based on the collection of
both PQ values and their corresponding EQ values, from the
results of the revealing interactions. If the ideal case, these
values are obtained for all key usage contexts of every SUD
service.

Figure 3. QUASE-IOS runtime process QRP

50

Quality awareness data are formed by appropriate support
processes: the non-functional requirements elicitation process
derives NFR thresholds out of the collected expected quality
data, whereas the SUD state evaluation process converts the
information about the design decision into the PQ data (e.g.
via modifying the values for quality-influencing factors as a
result of the architectural decision) and performs the
assessment of the design decision via question-answering on
the collected expected quality data.

This allows the software engineers to make quality-aware
decisions. For a particular decision, the stakeholders can be
asked to reveal the expected quality corresponding to the
proposed quality formed to reflect the impact of that decision:
A low assessment mark may indicate a problem with that
decision.

III. USER EVALUATIONS IN QUASE-IOS

In this section, we deal with the user evaluations in the
QUASE-IOS project framework and discuss the relevant
cases, the attributes of evaluation cases, and some challenges
and possible directions for a further discussion.

We distinguish two main categories of user evaluations in
the framework of the QUASE-IOS project: internal and
external evaluations (Table 1).

Internal evaluation (assessment) is performed as a part of
the QUASE-IOS runtime process. There is only one case of
such evaluation, i.e. stakeholder-driven internal evaluation
(SIE): a business stakeholder assesses proposed quality values
for SUD services during the EQ revealing process as
described above.

External evaluation is performed outside of the QUASE-
IOS runtime process. We distinguish the following cases of
external evaluations:

SEE - Stakeholder-driven external evaluation (a “meta-
process”): a business stakeholder evaluates (at design time)
the quality of the process of assessing the p values (i.e.
actually, the quality of organizing the SIE evaluation in the
EQ revealing process at runtime). Evaluations of that type
support revealing the information about stakeholder quality
perception and assessment to be integrated into the
implementation of the EQ revealing processes; and to make

the proposed solution meet the quality (e.g. usability) criteria
from the point of view of the business stakeholders.

OEE - Ontological external evaluation: both IT people
and business stakeholders evaluate the knowledge
incorporated into the StakeQPA ontology. We apply for that
evaluation established approaches (e.g. [6]).

CEE - Customer-driven external evaluation: IT people as
the expected users of the QUASE-IOS software solution
evaluate the quality of its implementation.

For these evaluation cases we can now distinguish the
following attributes (see Table 1):

1. Evaluation subject: the category of users performing the
evaluation; the most obvious categories are “business
stakeholders” and “QUASE-IOS users” (IT people). After
having clarified the ontological definition of the notions of
business stakeholder and QUASE-IOS customer (a part of the
StakeQPA engineering studies) we are going to establish a
more detailed categorization.

It is important to say here that in the framework of
QUASE-IOS project we cooperate with two local IT
companies focusing on custom software development for
service-oriented and mobile systems: their developers will be
the IT experts in the evaluations, whereas their customers will
play the role of business stakeholders.

2. Evaluation object: the category of quality being
evaluated, i.e. the quality of the prospective system under
development vs. the quality of the QUASE-IOS software
support and the ontological quality of the StakeQPA
knowledge.

3. Evaluation object source: the source for the quality
characteristics being evaluated, e.g. the appropriate software
lifecycle process in case of external evaluation or the
proposed quality forming process for the case of internal
evaluation.

4. Evaluation goal: such goals differ significantly for
external and internal evaluation cases.

5. Evaluation method: the empirical method used for the
particular evaluation [6-9].

We can see the following major challenges of
implementing the evaluation mechanisms for the QUASE-IOS
project:

TABLE I. USER EVALUATIONS IN QUASE-IOS

Evalua-

tion

case

Evaluation attributes

Evaluation subjects Evaluation object
Evaluation object

source
Evaluation time Evaluation goal Evaluation method

internal

SIE

Business stakeholders

(roles specific for the

SUD i.e. the problem at

hand)

SUD quality

attributes:

performance,

reliability etc.

Model-based PQ

forming process:

simulation,

prototyping etc.

Runtime (SUD
development

lifecycle)

Forming the

awareness data

(e.g. NFR, design

decision scores)

Model-based

prototyping,

quantitative data

collection [7, 8]

external

SEE

Business stakeholders

(representative sample

w.r.t. roles)

Interaction

process quality

attributes

Software process

for forming the

interaction support

Development time:

EQ revealing

process lifecycle

Interaction (EQ

revealing) process

forming and

validation

Experiments [9],

usability testing, case

studies, non-pervasive

techniques [7, 8]

external

CEE

IT people: requirement

engineers, project

managers, analysts

Software solution

quality attributes

QUASE-IOS

solution lifecycle

process

Development time:

QUASE-IOS

solution lifecycle

Solution validation

Surveys, interviews,

prototyping, usability

testing [7, 8]

external

OEE

Business stakeholders, IT

people: project managers,

quality engineers etc.

StakeQPA

ontology quality

attributes

StakeQPA

engineering pro-

cess (according to

e.g. [10])

Development time:

ontology

engineering

lifecycle

StakeQPA forming

and validation

Ontology evaluation

methods [6]

51

1. External and internal evaluations have quite different
goals and need to be implemented quite differently; on the
other hand, some of them (SIE and SEE) need to be performed
by the same category of users (the stakeholders without IT
experience). We believe it is rather challenging to motivate
such users to participate in these evaluations.

2. The differences between two categories of users
involved in such evaluations, namely business stakeholders
and the IT people, in particular, related to their perception of
quality and the expectations of the proposed solution need to
be addresses early and in full (e.g. on the ontology level).

3. The need of evaluating the interactions of the users of
both categories with the same software solution involves
establishing an interplay of the evaluations.

4. Embedding the empirical methods into the proposed
software solution makes us face the performance problems as
they need not hinder the interactive nature of this solution.

IV. CONCLUSIONS

As shown in this paper, the distinguishing features of the
proposed approach are related to the fact that it requires
organizing two categories of user evaluations – one being a
part of the solution itself, one to evaluate the quality of the
solution.

Such two-level structure of the evaluations makes their
organization rather challenging (especially as the same
category of users are supposed to perform the evaluations with
quite different goals) and we would like to address these
challenges by the discussion at the workshop.

REFERENCES

[1] R. P. L. Buse, C. Sadowski, and W. Weimer, "Benefits and barriers of
user evaluation in software engineering research," SIGPLAN Not., vol.
46, pp. 643-656, 2011.

[2] V. A. Shekhovtsov, R. Kaschek, and S. Zlatkin, "Constructing POSE: a
tool for eliciting quality requirements," in Information System
Technology and Its Applications - ISTA 2007, LNI, vol. P-107. Bonn:
GI, 2007, pp. 187–199.

[3] R. Kaschek, C. Kop, V. A. Shekhovtsov, and H. C. Mayr, "Towards
simulation-based quality requirements elicitation: a position paper," in
REFSQ 2008, LNCS, vol. 5025. London, Berlin, Heidelberg: Springer,
2008, pp. 135-140.

[4] A. Bachmann, W. Hesse, A. Ru, C. Kop, H. C. Mayr, and J. Vohringer,
"A practical approach to ontology-based software engineering," in
EMISA'07, LNI, vol. P-119. Bonn: GI, 2007, pp. 129-142.

[5] W. Hesse, "Ontologies in the software engineering process," in Proc.
EAI'05, Ceur-WS.org, vol. 141, 2005.

[6] Z. Li, M. C. Yang, and K. Ramani, "A methodology for engineering
ontology acquisition and validation," Artificial Intelligence for
Engineering Design, Analysis and Manufacturing, vol. 23, pp. 37-51,
2009.

[7] J. Lazar, J. Feng, and H. Hochheiser, Research Methods in Human-
Computer Interaction. Chichester: John Wiley & Sons, 2010.

[8] F. Shull, J. Singer, and D. I. K. Sjøberg, Eds., Guide to Advanced
Empirical Software Engineering. London, Berlin, Heidelberg: Springer,
2008.

[9] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A.
Wesslén, Experimentation in Software Engineering: An Introduction.
Boston, Dordrecht, London: Kluwer Academic Publishers, 2000.

[10] A. Gómez-Pérez, M. Fernández-López, and O. Corcho, Ontological
Engineering. London, Berlin, Heidelberg: Springer, 2004.

52

