

Kaschek/Delcambre (Eds.): The Evolution of Conceptual Modeling, LNCS 6520, pp. 117–136, 2011.
© Springer-Verlag Berlin Heidelberg 2011

On the Evolution of Quality Conceptualization
Techniques

Vladimir A. Shekhovtsov

Department of Computer-Aided Management Systems,
National Technical University “Kharkiv Polytechnic Institute”, Ukraine

shekvl@yahoo.com

Abstract. We investigate the notion of software product quality from the point
of view of its integration into the modeling activities on the same level of ab-
straction as traditional functional models (a conceptualization of quality). We
pay special attention to the evolution of the approaches for obtaining this con-
ceptualization through the history of conceptual modeling, propose their classifi-
cation according to common attributes and outline their distinguishing features.
Based on the proposed classification, we outline a way of establishing an evalua-
tion framework for quality conceptualizations aiming at supporting the choice of
a conceptualization solution best suited for the problem at hand.

Keywords: software product quality, conceptual modeling, quality conceptuali-
zation, quality model, quality ontology, quality evaluation.

1 Introduction

Conceptual modeling is often viewed as an activity related to capturing the knowl-
edge about the desired system functionality (as quoted from [89], “the conceptual
schema of an information system is the specification of its functional requirements.”)
This view, however, can lead to the problem of quality-unaware conceptual modeling:

− looking at the problem domain to obtain its conceptual model only from the point
of view of the functionality of the system-to-be restricts the analyst and can be the
source of mistakes due to the fact that quality has to be introduced into the existing
system model later on the development lifecycle;

− these mistakes are often difficult to find until the later stages of the software proc-
ess, because many quality-related issues become only evident when the system is
put into use; on the other hand, being parts of early decisions they can be difficult
and costly to fix [25, 49, 56].

To overcome the above problem, it seems natural to represent the quality concepts in
a way compatible with conceptual modeling notions (define a conceptualization of
quality) and make this representation connected to the conceptual schema of the de-
sired system’s functionality (i.e. reflecting the software quality in conceptual models).
Researchers proposed different techniques to conceptualize the product quality, in
particular, quality modeling [20, 28, 32] and metamodeling [17, 18, 38], quality onto-
logical engineering [13, 31, 57] etc.

118 V.A. Shekhovtsov

While this abundance of methods allows the analyst to enjoy an excellent flexibil-
ity when choosing a conceptualization technique, it also has its downside, because
this choice can be confusing. The problem is that the current research literature lacks
a unified classification of the quality conceptualization techniques (in particular, we
are not aware of any comparative treatment of quality modeling and quality ontology
engineering). As a result, it is difficult for analyst to decide which quality conceptu-
alization solution is better suited for the problem at hand. It is unfortunate to observe
this situation in contrast to extensive attention paid to e.g. the classification and unifi-
cation of the approaches to the problem of handling the quality of conceptual models
[75, 84]. In this paper, we aim at overcoming this problem by elaborating a detailed
classification of the existing quality conceptualization techniques together with a view
of their evolution along the proposed classification dimensions. This classification can
serve as a foundation for the evaluation framework for quality conceptualizations as
these dimensions could underlie the quality criteria for evaluation.

Section 2 continues by introducing the concept of quality to be used in this paper.
In Section 3, we present a classification of quality conceptualization techniques based
on the dimensions of their evolution. In Section 4, we outline the way of establishing
the evaluation framework based on this classification. Section 5 describes the related
work; in Section 6, we make conclusions, and outline future research directions.

2 A Concept of Quality

Before elaborating the classification of quality conceptualization techniques (QCT), it
is necessary to define the concept of quality to be used in this paper as we plan to
build this classification, in part, upon the properties of this concept. We need to find a
common ground here, as different researchers often rely on definitions of quality re-
ferring to quite different things [67]: adherence to requirements, fitness for a particu-
lar purpose, user satisfaction etc. We believe that it can be done based on the recent
efforts of establishing the notion of software quality and its usage in terms of the for-
mal ontology [78]. In this paper, we rely on this body of work, represented by De-
scriptive Ontology for Linguistic and Cognitive Engineering (DOLCE) [79] and,
more specifically, by Core Ontology for Requirements Engineering (CORE) [57].

Quality Concept in DOLCE and CORE. We follow the approach of the authors of
CORE in adopting the definition of quality from DOLCE to the case of software
product quality. In doing so we agree that Quality (as a whole) is a concept embracing
the set of particular qualities [79, pp. 16-18] i.e. perceivable and measurable entities
that characterize particular individuals (such as functional units of the system-to-be)
and are related to other qualities (reflecting e.g. a hierarchical order or quality
interdependencies). Every quality is accompanied with a conceptual space [46] which
is a collection of quality dimensions defining how the individuals are positioned
(measured) according to this quality; it is called quality space in DOLCE. Qualities
(such as the response time for the particular operation) are distinguished from their
values (such as 1 sec); these values are called quales and describe positions of
individuals in a particular quality space.

 On the Evolution of Quality Conceptualization Techniques 119

To clarify the properties of qualities as perceivable entities we turn to CORE that
categorizes ways of perceiving quality by stakeholders as a part of communicated
information. This categorization is based on the type of the speech act used by stake-
holders [57, p. 181]. Directive acts (ordering something to be done) define goals:

− precise (usually quantitative) quality constraints if the accompanying quality space
is shared between all stakeholders so everybody agree how to measure this quality
e.g. “the response time of X must be below 0,5 sec”;

− vague qualitative softgoals in a NFR framework sense [26] if there is no such
agreement so the perception of this quality is stakeholder-specific e.g. “the per-
formance of X must be good”;

Other kinds of speech acts define, in particular, (soft or hard) domain assumptions
(descriptions of something existing in a domain e.g. “the average response time of X
is 0,4 sec”) and evaluations (comparative statements about something in a domain e.g.
“the response time of X in case of Y is 30% better than in case of Z”).

Our Definition of Quality. For now, we can distinguish the following properties of
the particular quality qc in a DOLCE sense (i.e. the quality characteristic in a sense of
ISO/IEC 25010 standard [55]):

− measurability (availability of the quality space for qc);
− characteristics of the quality space of qc (such as its structure or degree of sharing);
− characteristics of the relationships between qc and other qualities;
− characteristics of the relationships between qc and the functional units of the sys-

tem-to-be characterized by this quality;
− characteristics of the relationships between qc and stakeholders referring to this

quality in their description of the system-to-be.

To formalize this view in context of all available qualities, we describe the quality of
the software system as

, , ,=Q QC QR QU QF (1)

where

− QC is a set of qualities (quality characteristics) in a sense of DOLCE where every
∈qc QC is accompanied by a shared or private quality space with particular char-

acteristics;
− QR is a set of relationships among particular qualities (such as those defining a

hierarchy of qualities or interdependencies between particular qualities such as re-

liability and performance): ()′ ⊆ ∈qr QC QC QR , where qr is a particular relation-
ship of this kind, QC’ is a set of qualities involved into this relationship;

− QU is a set of relationships among qualities and stakeholders of the system-to-be
such as those defining stakeholder speech acts involving the particular quality (di-
rective acts to define goals etc) and connecting private quality spaces to stake-

holders: (,)′ ′⊆ ⊆ ∈qu QC QC U U QU where qu is a particular relationship of this
kind, QC’ is a set of involved qualities, U’ is a set of involved stakeholders, U is a
set of all available stakeholders;

120 V.A. Shekhovtsov

− QF is a set of relationships among qualities and functional entities defined by a
particular architecture of the system-to-be characterized by these qualities:

(,)′ ′⊆ ⊆ ∈qf QC QC F F QF where qf is a particular relationship of this kind, QC’
is a set of involved qualities, F’ is a set of involved functional entities, F is a set of
all available functional entities.

In the following section, we will use this definition to establish a classification
framework for quality conceptualization techniques.

3 Quality Conceptualization Techniques: Dimensions of Evolution

We start from the definition of a conceptualization of quality to be used throughout
this paper: a conceptualization of quality is a representation of the system quality on
the same level of abstraction as the conceptual model of the functionality of this sys-
tem. Currently such conceptualizations are obtained using various quality conceptu-
alization techniques. The purpose of this section is to establish a classification of
these techniques and to look at their evolution through the history of conceptual mod-
eling. We find a set of dimensions or “axes” for the treatment of quality to evolve
along and use these dimensions as a foundation for the proposed classification.

Categories for QCT Evolution Dimensions. Based on the definition of quality
presented in Section 2, we distinguish five categories of QCT evolution dimensions
(covering 14 dimensions in total).

First category reflects the properties of the conceptualization process itself:

1. Conceptualization process dimensions (2 in total) reflect the properties of the proc-
ess of performing QCT (such as QCT ability to support model-based or ontological
view on quality, and to represent quality on different levels of abstraction).

Next three categories group dimensions related to a QCT’s ability to support software
quality defined according to (1):

2. Quality properties support dimensions (3 in total) reflect a QCT’s ability to support
different properties of the QC set, including QR relationships (such as the way of
organizing the set of qualities, the way of organizing quality spaces, the support for
dependencies between qualities etc);

3. Quality perception support dimensions (2 in total) reflect a QCT’s ability to sup-
port the properties of the QU set describing quality as a perceivable entity (such as
the ability to reflect shared and separate quality spaces, the support for quality con-
straints and softgoals etc);

4. Quality usage support dimensions (3 in total) reflect a QCT’s ability to support the
properties of the QF set to model such software process artifacts as quality re-
quirements or attributes (such as the support of qf relationships themselves, the
availability of particular techniques for their description etc.).

 On the Evolution of Quality Conceptualization Techniques 121

Last category covers dimensions related to QCT applicability:

5. Applicability dimensions (4 in total) reflect a QCT’s applicability for the particular
classes of problems (such as the stage of a software lifecycle it can be used for, if it
is applicable for the particular application domain or software category etc);

Next, we will look in detail at the particular dimensions belonging to these categories.

3.1 Conceptualization Process Dimensions

These dimensions reflect the capabilities of the QCT process. We start from two general
dimensions reflecting model-ontology dichotomy and the supported abstraction level.

3.1.1 Conceptualization Space
Purpose: to reflect the problem-solution space dichotomy; following [7, 90] we
define its two possible scale values (Table 1):

Table 1. Conceptualization space scale

Value Meaning Examples
quality
modeling
technique
(QMT)

Means of expressing software quality in a solution
space (prescriptively defining the system-to-be)
under “closed-world” assumption (everything not
explicitly described is assumed non-existent)

[15, 37, 55, 58], re-
views are in [20, 32]

quality
ontology
engineering
technique
(QOT)

Means of expressing software quality in a problem
space (describing the real-world problem domain
addressed by the system under development) under
“open-world” assumption (everything not explic-
itly described is assumed unknown)

[31, 40, 59], no re-
views except [78]
covering formal tech-
niques not restricted to
software quality

Notes on evolution. QMT are considerably older than QOT: first quality models were
introduced in mid-70s [15, 80], whereas the earliest works describing ontological rep-
resentation of quality appeared in mid-90s. To our knowledge, the term “quality on-
tology” was first used in a paper [66] describing an ontology aimed at “a logical
formalization of quality knowledge”; it showed the quality as a set of concepts sup-
porting predicting and assessing the quality for the software system. Later, [14] pro-
posed the domain taxonomy (defined by means of ontological approach) aimed at
helping to describe the conflicts in requirements; it also covered the quality concept.

For many years, QMT significantly outnumbered QOT, but recently the evolution
trend started to reflect the growing need for deeper ontological foundations for quality
conceptualization e.g. based on cognitive theory [46, 79, 87].

3.1.2 Abstraction Level
Purpose: to reflect that quality conceptualization solutions can be described on
different levels of abstraction [112]; we consider abstraction levels for QMT and
QOT separately as they treat such levels differently (despite some similarities).

Abstraction levels for quality models. We start from describing the abstraction level di-
mension of the QMT evolution according to the notion of a modeling meta-pyramid [7]
where the solution belonging to a particular level defines the model for a language used

122 V.A. Shekhovtsov

to define the solutions on the level below (i.e. a metamodel). We restrict the pyramid to
three levels (the scale values in Table 2 correspond to these levels):

− M1 level – for the models of some phenomenon; in our case a quality model di-
rectly describes the phenomenon of quality as used in a system-to-be;

− M2 level – for the metamodels (models of languages used for describing the M1-
level models); in our case a quality metamodel is used to define quality models;

− M3 level – for the meta-metamodels (models of languages used for describing the
metamodels); here a meta-metamodel can be used to define quality metamodels.

Table 2. Abstraction level scale (QMT)

Value Meaning Examples
concrete QMT solution belongs to M1 level; e.g. it is a taxon-

omy of quality characteristics with more general
ones on the top level and more concrete ones on the
levels below, often not changeable (fixed model
QMT [41]) and described by example without meta-
information.
Criticized due to the arbitrary choice of quality char-
acteristics and the lack of connection to measurable
quality attributes at the bottom level [32, 67]

early QMT [15, 80]
standards [54, 55],
etc.

QMT solution belongs to the M2 (meta-) level (a metamodel)
implicit quality metamodel: a metamodel not docu-
menting this fact (introduced “bottom-up” e.g. via
custom or mixed model QMT [41] allowing modifi-
cation of the model structure and often omitting
quality characteristics from the model descriptions)

[37, 53]
meta-
descriptive

explicit quality metamodel: introduced “top-down”
with an explicit purpose of describing the set of pos-
sible quality models; industry examples are UML
quality profiles adding support for new modeling
concepts to UML via an extension of the UML met-
amodel

generic metamodels:
[17, 18, 58, 106]
UML profiles:
[1, 6, 95, 109]

meta-meta-
descriptive

QMT belongs to the M3 (meta-meta-) level; no solu-
tions on this level explicitly addressing the represen-
tation of quality metamodels

generic: MOF-based
[17, 18], formal
notions [58]

Abstraction levels for ontologies. For QOT, this dimension reflects the level of ab-
straction of the concepts described with a quality ontology. It differs from the QMT
abstraction level as it refers to the concepts being described – not the description ap-
proach (all ontologies of different levels can be defined using the same ontology lan-
guage). It has the same values as for QMT but with different semantics (Table 3).

Notes on evolution. An evolution of QCT along this dimension is not linear. For
QMT, it mostly follows the path up the meta-pyramid from M1 to M2 levels [32, 57,
p. 232], but particular M1-level solutions appear if no reuse of models is necessary.
For QOT, the first known quality ontology [14] was of concrete kind, upper-level
quality ontologies have been introduced later via generalization and are used more
frequently now, though some concrete and mixed ontologies are available as well.

 On the Evolution of Quality Conceptualization Techniques 123

Table 3. Abstraction level scale (QOT)

Value Meaning Examples
concrete QOT defines quality ontology directly describing real-

world phenomenon of quality (via particulars; with
concepts for performance, reliability etc)

[3, 14]

meta-
descriptive

QOT defines quality upper ontology describing the
concepts (universals) for concrete quality ontologies
(e.g. by defining concepts for quality characteristic,
quality metric, describing their relationships etc.)

[13, 40, 57, 76]

meta-meta-
descriptive

QOT reflects the ontology language; we follow [7] in
that it such language is a modeling language described
on M3 level.

OWL [76], formal
notations [57, 79]

3.2 Quality Properties Support Dimensions

These dimensions correspond to the degree of completeness of reflecting properties of
the QC set of qualities (1) and the QR relationships among the elements of this set.
We distinguish dimensions reflecting QC structure, measurability of its elements, and
dependencies inside QC (omitting some others e.g. prioritization support).

For brevity, we list only few qualitative values per dimension; later we will show
that to perform QCT evaluation based on this classification, it will be necessary to
quantify these values to make the dimensions measurable.

3.2.1 Structural Complexity
Purpose: to reflect the organization of QC as defined by internal relationships

∈qr QR (Table 4).

Table 4. Structural complexity scale

Value Meaning Examples
single
quality

QCT describes a single quality characteristic; often
such techniques conceptualize the domain related to
this characteristic

security [39, 106] etc.
reliability [50, 116] etc.
performance [74, 109]

set QCT does not describe any structure for QC [57, 66]
taxonomy QCT describes a hierarchy of ∈qc QC with more

general characteristics at higher level

Early QCT [15, 80],
standards [53, 54] etc.

graph QCT deviates from pure taxonomy in QC structure
e.g. by taking into account overlapping characteris-
tics

[16, 37]

Notes on evolution. The treatment of this issue has evolved into taking into account
overlapping quality characteristics. This evolution has been driven by the increasing
level of understanding of the real-world notion of quality, which goes beyond seeing
it as a simple taxonomy. Older pure-taxonomy solutions are still widespread espe-
cially as they are parts of a standard e.g., ISO/IEC 9126.

124 V.A. Shekhovtsov

3.2.2 Quality Measurability
Purpose: to reflect the degree of supplementing ∈qc QC with quality metrics i.e. the
availability of the shared quality spaces [57] connected to these characteristics (Table 5).

Table 5. Quality measurability scale

Value Meaning Examples
none Purely qualitative QCT; they are usually resulted from

establishing top-level quality characteristics first
Early QCT [15,
80] etc.

basic QCT includes only generic support for quality metrics (e.g.
by establish the “metric” concept but not elaborating the
concepts describing the way of calculating these metrics);
usually this is true for the solutions that describe the quality
but are not intended for its evaluation or prediction

[18, 40, 99]

complete QCT includes more extensive support for quality metrics
(e.g. conceptualizing the way of calculating their values)

[13, 81, 107]

Notes on evolution. Initially, QCTs were qualitative in nature; the evolution of their
treatment resulted in supplementing the conceptualizations with extensive sets of
quantitative metrics. Quality model standards [54, 55] also include metrics. Currently,
there are some arguments in favor of the prohibition of using purely qualitative mod-
els at least for some problem areas, see the discussion in [32, 42, 56].

3.2.3 Quality Dependencies Support
Purpose: to reflect the degree of taking into account the interdependencies among
quality characteristics defined by relationships ∈qr QR (Table 6).

Table 6. Quality dependencies support scale

Value Meaning Examples
none No support for interdependencies [15]
basic QCT deals with interdependencies among quality charac-

teristics (e.g. how they influence each other) in qualitative
fashion (i.e. via such values as “supports” or “neutral”)

[13, 26, 99]

complete QCT includes quantitative and qualitative QR treatment Jureta et al. [58]

Notes on evolution. The support for interdependencies inside QC is not widely avail-
able in QCT. Only recently a solution [58] appeared with their complete support.

3.3 Quality Perception Support Dimensions

These dimensions are related to the fact that different stakeholders perceive quality
differently. Their values reflect the properties of the QU set (QU-relationships) (1).

3.3.1 Stakeholder Dependency
Purpose: to reflect a QCT’s ability to support QU-relationships (Table 7).

 On the Evolution of Quality Conceptualization Techniques 125

Table 7. Stakeholder dependency scale

Value Meaning Examples
none No QU-relationships: single-person view on quality (also im-

plies “none” value for all other dimensions from this category)
[40, 54] etc.

basic QU-relationships are supported but without private quality
spaces (conceptualizations include the notion of stakeholder,
but do not allow per-stakeholder metrics)

[48, 65]

complete QU-relationships are accompanied by private quality spaces
(allowing per-stakeholder measuring of quality)

[25, 26, 57]

Notes on evolution. The earliest QMT did not support QU-relationships at all. Later
evolution led to including this support [48] and soon to accompanying it with private
quality spaces via introducing the concept of softgoal in the NFR framework [26].

3.3.2 Speech Mode Support
Purpose: to reflect a QCT’s ability to support different speech modes in QU-
relationships; here we group values by the type of the artefact produced (Table 8).

Table 8. Speech mode support scale

Value Meaning Examples
QCT supports a subset of the available speech modes:

goals: directive mode [25, 61, 117] etc.
assumptions/attributes: declarative/assertive mode [62]

partial

evaluations: expressive mode [24, 107] etc.
complete QCT supports all speech modes [57]

Notes on evolution. First supported speech mode was a directive one used to define
goals (formulated as quality constraints [14, 71] or softgoals [26]). Later, e.g. after
introducing evaluation-related QCT [107] (see Section 3.5.1) the support for other
modes started to appear; a complete solution is now only available in CORE [57].

3.4 Quality Usage Support Dimensions

These dimensions are related to the usage of the quality concept to model quality re-
quirements, quality attributes, or other concepts related to the quality of the system-
to-be. They reflect a QCT’s ability to support the properties of the QF set (1) i.e. the
relationships between a conceptualization of quality and a conceptual model of the
system functionality (QF-relationships).

The challenge here lies in a fact that currently QF-relationships are mostly treated
implicitly, their descriptions are obscured by the descriptions of the particular re-
quirement- or attribute-related modeling solutions; as a result, we know of no at-
tempts for categorizing them or investigating their evolution.

3.4.1 Usage Support
Purpose: to reflect an objective of using a quality conceptualization via QF-
relationships (Table 9).

126 V.A. Shekhovtsov

Table 9. Usage support scale

Value Meaning Examples
none No support for QF-relationships (also implies “none”

value for all other dimensions from this category)
[15, 40, 54, 80] etc.

present QCT reflects the relationships aimed at modeling the
quality requirements for the system-to-be or the quality
attributes for the implemented system

requirements
[3, 25, 57,, 61, 82] etc.
attributes
[62, 85, 111] etc.

Notes on evolution. The earliest QMT did not support QF-relationships; they just de-
scribed the quality phenomenon and were not concerned about its usage. Later, the
general trend was to first include and then extend this support in both QMT and QOT.

3.4.2 Usage Explicitness
Purpose: to reflect a degree of explicitness in describing the usage of a conceptualization

via ∈qf QF (Table 10).

Table 10. Usage explicitness scale

Value Meaning Examples
explicit QCT reflects the relationships defined explicitly e.g. as as-

sociations between quality and functionally-related concepts
[3, 13, 42, ch. 18,
61] etc.

implicit QCT reflects the relationships defined implicitly e.g. by
specifying the criteria for participation

[29, 68, 83]

Implicit solutions employ aspect-oriented techniques [98] by defining criteria (point-
cuts in aspect-oriented terminology) describing sets of functionality-related concepts
(e.g. classes or methods) to be involved into relationships with particular quality-
related concepts. In this case it is necessary to express such criteria at an appropriate
level of abstraction [38, 104] e.g. using semantic notions [22, 102].

Notes on evolution. Initially, QF-relationships were of explicit kind, recently the tech-
niques for expressing them implicitly started to appear, but the former are still in a
wider use and there are doubts [61] if the introduced complexity is justifiable.

3.4.3 Usage Target
Purpose: to reflect the properties of the system-to-be functional units used in QF-
relationships (Table 11).

Table 11. Usage target scale

Value Meaning Examples
static QF-relationships depend on a static decomposition of the con-

nected model (e.g. by targeting classes)
[42, ch. 18,
117]

dynamic QF-relationships depend on a behavior of the system-to-be re-
flected in its model (e.g. by targeting activities, events or states)

[23, 33, 95]

all QF-relationships target both static elements and behavior [1, 83]

Notes on evolution. Currently we observe the move from static to dynamic relation-
ships as more knowledge about the relations between quality and behaviour is gained.

 On the Evolution of Quality Conceptualization Techniques 127

3.5 Applicability Dimensions

These dimensions are related to the external view on the quality conceptualization by
describing a QCT’s applicability for the particular classes of problems.

3.5.1 Application Goal
Purpose: to reflect the goal of applying the solution produced by this QCT, we follow
[32, 112] in defining its values (Table 12).

Table 12. Application goal scale [32, 112], “all” value is also available

Value Meaning Examples
definition QCT defines the notion of quality [15, 54, 79] etc.
assessment QCT is used for quality assessment review is in [107]
prediction QCT is used for quality prediction [94, 114] etc.

Notes on evolution. Early QCT were mostly of a “definition” kind. Now, techniques
of all three kinds are being actively developed in parallel (with researchers often un-
aware of each other’s work [32]) with definition models being the most widespread.

3.5.2 Process Stage Dependency
Purpose: to reflects the stage(s) of the software process the particular QCT to be
applied for [112] (Table 13).

Table 13. Process stage dependency scale

Value Meaning Examples
none QCT is generic enough to be applied at different

software process stages
standards [54, 55],
etc.

QCT is specific for a particular process stage(s)
requirements engineering [36, 45, 57] etc.
architectural design [2, 29, 70, 108] etc.

stage-
specific

software implementation [44]
integrated QCT produces integrated quality conceptualizations

to be used in MDA-like environment
[5, 68] etc.

Notes on evolution. Early QCT were mostly of a stage-independent kind; currently
stage-specific solutions outnumber the former due to a wider field of application (with
requirement engineering stage as the most frequent target). Very few QCT target
software implementation. The trend is also toward integrated MDA-based techniques.

3.5.3 Application Category Dependency
Purpose: to reflect the classification of the software solutions QCT to be applied for
(Table 14). Notes on evolution: early QCT were category-independent, over time, the
average degree of category dependency tends to increase alongside the amount of
gained knowledge about the quality of the particular software classes.

128 V.A. Shekhovtsov

Table 14. Application category dependency scale

Value Meaning Examples
QCT produces conceptualization suited for a particular software category(ies)

service-oriented systems [45, 58, 65, 73, 100] etc.
real-time systems [6, 43, 109]
component software [4, 19, 20, 24] etc.

category-
specific

web-based systems [18, 51, 77, 86] etc.
none QCT does not target any particular software

category (category-independent)
standard-related QCT
[17, 28, 54, 55, 105], etc.

3.5.4 Domain Dependency
Purpose: to reflect the degree of domain-dependency possessed by the QCT (Table 15).
Notes on evolution: early QCT were domain-independent. Currently, solutions of this
kind are still most widely available, domain-specific solutions are not often published in
software engineering literature; recently, domain-customizable solutions started to
appear instead.

Table 15. Domain dependency scale

Value Meaning Examples
domain-
specific

QCT produces ad-hoc conceptualization specific
for the particular application domain

e-government [76]
e-commerce [12, 103]
education [9, 47, 92]

domain-
customizable

QCT allows to develop domain-dependent concep-
tualizations by customizing a generic “template”

[21, 40, 64, 101]

none QCT produces conceptualization not specific to
any particular domain (domain-independent)

all except above

4 Towards a QCT Evaluation Framework

In this section, we discuss the steps that could be taken to turn the proposed set of
classification dimensions into the set of evaluation criteria to be used for selecting the
best QCT for the problem at hand. Full coverage of this issue will be the target for
subsequent publications.

4.1 Evaluating Quality of Quality Conceptualizations

To make the proposed set of QCT evolution dimensions a part of a QCT evalua-
tion/comparison framework we need to take into account the fact that our proposed
dimension scale values are just qualitative “tags” established for marking the evolu-
tion milestones. The problem with using such values to organize QCT comparison
and evaluation is that quality spaces [46, 57] associated with our dimensions are ru-
dimentary (the choice of values is arbitrary, there is no order or distance defined etc).

We see several ways to overcome this limitation. First of all, it is possible to drop
quality spaces altogether by establishing so-called “descriptive mode” comparison
framework such as the one proposed by Babar et al. for software architecture evalua-
tion methods [8]. Such framework defines only dimensions; for every QCT under
evaluation, it is necessary to elaborate narrative descriptions of its positions related to

 On the Evolution of Quality Conceptualization Techniques 129

these dimensions. For particular QCT, such descriptions can go into great detail (see
the description of ATAM according to the Babar et al. framework [63]). In addition,
for the specific classes of projects, it is possible to describe the most suitable QCT
position w.r.t. every dimension. This way, one would document a set of useful
(though informal) guidelines for selecting QCT suitable to the problem at hand.

Other approaches involve quantifying the dimensions turning them into quality
evaluation dimensions to establish QCT quality model of the assessment type (“qual-
ity of quality” model - QM2) and applying this model to the problem at hand. Several
dimension quantification techniques can be used to aid in solving this problem.

1. Following bottom-up quality modeling approach [37] by defining measurable QCT
quality-bearing properties and connecting our dimensions to these properties. To
do so, we can adapt the metrics from e.g. general evaluation frameworks for con-
ceptual models [75, 84, 91] and ontologies [30, 88]. For example, one can take the
quality metamodel defined by the particular QMT and calculate the completeness
of its coverage of the QU-relationships by modifying the technique from [35].
Next, we connect this property (and others) to the “stakeholder dependency” di-
mension by using the weighting approach of [10, 100] or by other means.

2. Quantifying the dimensions by means of multiple criteria decision making
(MCDM) technique e.g. Analytic Hierarchy Process (AHP) [2, 12, 72]. This way,
the positions of the particular QCT (decision alternatives) related to a particular
dimension are compared using AHP pairwise comparison technique (how better is
QCTA to QCTB w.r.t. stakeholder dependency?); as a result, the values for these
relative positions are calculated for every dimension. This usually involves experts.

3. Applying fuzzy logic to the problem by converting dimensions into linguistic vari-
ables and establishing appropriate membership functions.

After the dimensions are quantified (we obtained the figures for the positions of QCT
alternatives), we can again apply a MCDM technique (e.g. AHP) to take into account
the relative importance of the dimensions (quality criteria) for the problem at hand (a
generic procedure of this kind is described e.g. in [60]).

4.2 Engineering Quality Conceptualizations for Situational Methods

It seems feasible to integrate the customizable (or selectable) QCTs as method compo-
nents into the situational method engineering (SME) framework [52] aimed at estab-
lishing the situational conceptual modeling process [11, 110] tailored to the problem at
hand. Such components could be called QCT method chunks [93], it is also possible to
turn them into QCT method services according to a method-as-a-service idea [34, 96].
QCT evaluation framework defined as outlined above could be integrated into this
process as a means of selecting the appropriate chunks in a way similar to described in
[69]; in method-as-a-service case it could be also feasible to treat QCT qualities as
QoS and employ QoS-based service selection techniques (e.g. [115]).

The idea of introducing quality definitions into the software process by means of
SME was first proposed by Saeki [97] who presented a SME framework aimed at
embedding metrics into the software process activities to make produced development
artifacts measurable. This approach automates assessing the quality of conceptual
models (such as class diagrams complexity and readability) or quality characteristics

130 V.A. Shekhovtsov

of the system-to-be that could be measured at development time based on these arti-
facts (such as measuring modifiability based on attributes of the use case diagram).
Our goal is to facilitate extending the existing methods with QCT method
chunks/services aimed at dealing with quality in conceptual models such as making
available pre-selected quality conceptualizations suitable for the problem at hand.

5 Related Work

Despite the fact that QCT received a lot of attention from the conceptual modeling
research community, we know of no attempts to review all types of these techniques
(including both quality models and quality ontologies) using a unified set of classifi-
cation/evolution dimensions.

Available reviews of quality models are not numerous [20, 27, 32]. The closest to
ours is the approach by Wagner at al [113] which proposed six classification dimen-
sions to some degree similar to ours (purpose, view, attribute, phase, technique, and
abstractness), they, however, did not explore this issue in detail as it was not the main
purpose of that work, in particular, no evolution of these techniques was investigated.

There are also QCT reviews limited to particular evolution dimensions. For exam-
ple, numerous reviews of quality requirement conceptualizations [25, 61, 108] are,
from the point of view of this paper, detailed treatments of just a subset for a speech
mode dimension possessing “goal” (directive) value. Another example is the review
by Tian [107] dedicated to evaluation models.

Quality ontologies received even less attention. Actually, we know of no attempts
to perform dedicated review of these techniques except some limited reviews in the
“related work” sections of the papers dedicated to particular techniques [56, 57, 59].
We need, however, to mention a paper [78] reviewing different approaches of repre-
senting quality by means of formal ontology without explicit connections to software.

6 Conclusions and Future Work

In this paper, we proposed an extended set of evolution dimensions for quality con-
ceptualization techniques which can also serve as criteria for their classification; such
classification could help with a confusion related to the abundance of QCT and lack-
ing clear definitions of the limits of their applicability. We based these dimensions on
a QCT’s ability to represent software quality defined according to its treatment in
CORE [57] and DOLCE [79] ontologies, on the degree of support for stakeholder
perception of quality and the connections to the functional components of the system-
to-be, and on a QCT’s applicability to the particular classes of problems. We outlined
the ways of establishing a QCT evaluation framework based on the proposed classifi-
cation criteria. This framework could help to resolve the problem of selecting QCT
best suited for the project at hand.

We plan to apply our classification framework to all QCT known to us and make
the results of this classification available to public; we expect that some adjustments
to the set of dimensions will need to be made in the course of such application. On the
other hand, we plan to elaborate the evaluation framework and QCT method
chunks/services outlined in Section 4.

 On the Evolution of Quality Conceptualization Techniques 131

References

1. Aagedal, J., de Miguel, M.A., Fafournoux, E., Lund, M.S., Stolen, K.: UML Profile for
Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms, Tech-
nical Report TR 2004-06-01. OMG (2004)

2. Al-Naeem, T., Gorton, I., Babar, M.A., Rabhi, F.A., Benatallah, B.: A quality-driven sys-
tematic approach for architecting distributed software applications. In: Roman, G.-C.,
Griswold, W.G., Nuseibeh, B. (eds.) Proc. 27th International Conference on Software
Engineering (ICSE 2005), pp. 244–253. ACM, New York (2006)

3. Al Balushi, T.H., Sampaio, P.R.F., Dabhi, D., Loucopoulos, P.: ElicitO: A Quality On-
tology-Guided NFR Elicitation Tool. In: Sawyer, P., Heymans, P. (eds.) REFSQ 2007.
LNCS, vol. 4542, pp. 306–319. Springer, Heidelberg (2007)

4. Alvaro, A., de Almeida, S.: A software component quality framework. ACM SIGSOFT
Software Engineering Notes 35, 1–18 (2010)

5. Ameller, D., Gutierrez, F., Cabot, J.: Dealing with non-functional requirements in model-
driven development. Report ESSI-TR-10-05. Universitat Politècnica de Catalunya (2010)

6. Apvrille, L., Courtiat, J.-P., Lohr, C., de Saqui-Sannes, P.: TURTLE: A Real-Time UML
Profile Supported by Formal Validation Toolkit. IEEE Transactions on Software Engi-
neering 30, 473–487 (2004)

7. Aßmann, U., Zschaler, S.: Ontologies, Meta-models, and the Model-Driven Paradigm.
In: Calero, C., Ruiz, F., Piattini, M. (eds.) Ontologies for Software Engineering and
Software Technology, pp. 255–279. Springer, Heidelberg (2006)

8. Babar, M.A., Zhu, L., Jeffery, R.: A Framework for Classifying and Comparing Software
Architecture Evaluation Methods. In: Proc. 15th Australian Software Engineering Con-
ference (ASWEC 2004), pp. 309–318. IEEE Press, New York (2004)

9. Bajnaid, N., Cogan, B., Al-Nuaim, H.: Software quality ontology for teaching: a devel-
opment methodology’s issues. In: Proc. 5th International Innovations in Information
Technology (IIT 2008), pp. 352–356 (2008)

10. Bansiya, J., Davis, C.G.: A hierarchical model for object-oriented design quality assess-
ment. IEEE Transactions on Software Engineering 28, 4–17 (2002)

11. Becker, J., Janiesch, C., Pfeiffer, D., Seidel, S.: Evolutionary method engineering: towards
a method for the analysis and conception of management information systems. In: Proc.
12th Americas Conference on Information Systems (AMCIS 2006), pp. 3686–3697 (2006)

12. Behkamal, B., Kahani, M., Akbari, M.K.: Customizing ISO 9126 quality model for evalua-
tion of B2B applications. Information and Software Technology 51, 599–609 (2009)

13. Bertoa, M., Vallecillo, A., Garc¡a, F.: An Ontology for Software Measurement. In: Ca-
lero, C., Ruiz, F., Piattini, M. (eds.) Ontologies for Software Engineering and Software
Technology, pp. 175–196. Springer, Heidelberg (2006)

14. Boehm, B., In, H.: Identifying Quality-Requirements Conflicts. IEEE Software 13, 25–35
(1996)

15. Boehm, B.W., Brown, J.R., Kaspar, H., Lipow, M., MacLeod, G.J., Merritt, M.J.: Char-
acteristics of Software Quality. North Holland, New York (1978)

16. Buglione, L., Kececi, N., Abran, A.: An Integrated Graphical Assessment for Managing
Software Product Quality. In: Proc. 12th International Software Quality Conference
(ICSQ 2002), Ottawa, Canada (2002)

17. Burgués, X., Franch, X., Ribó, J.M.: A MOF-Compliant Approach to Software Quality
Modeling. In: Delcambre, L.M.L., Kop, C., Mayr, H.C., Mylopoulos, J., Pastor, Ó. (eds.)
ER 2005. LNCS, vol. 3716, pp. 176–191. Springer, Heidelberg (2005)

132 V.A. Shekhovtsov

18. Cachero, C., Calero, C., Poels, G.: Metamodeling the Quality of the Web Development
Process’ Intermediate Artifacts. In: Baresi, L., Fraternali, P., Houben, G.-J. (eds.) ICWE
2007. LNCS, vol. 4607, pp. 74–89. Springer, Heidelberg (2007)

19. Carvalho, F., Meira, S.R.L., Xavier, E., Eulino, J.: An Embedded Software Component
Maturity Model. In: Choi, B. (ed.) Proc. 9th International Conference on Quality Soft-
ware (QSIC 2009), pp. 426–431. IEEE Press, New York (2009)

20. Carvallo, J.P.: Systematic Construction of Quality Models for COTS-Based Systems.
PhD Thesis. Universitat Politècnica de Catalunya, Barcelona (2005)

21. Carvallo, J.P., Franch, X., Quer, C.: Building and Using Quality Models for Complex
Software Domains. Technical Report LSI-03-28-R. Universitat Politècnica de Catalunya,
Barcelona (2007)

22. Cazzola, W., Jezequel, J.M., Rashid, A.: Semantic join point models: Motivations, no-
tions and requirements. In: Proc. Software Engineering Properties of Languages and As-
pect Technologies Workshop (SPLAT 2006) (2006)

23. Charfi, A., Müller, H., Mezini, M.: Aspect-Oriented Business Process Modeling with
AO4BPMN. In: Kühne, T., Selic, B., Gervais, M.-P., Terrier, F. (eds.) ECMFA 2010.
LNCS, vol. 6138, pp. 48–61. Springer, Heidelberg (2010)

24. Choi, Y., Lee, S., Song, H., Park, J., Kim, S.H.: Practical S/W Component Quality
Evaluation Model. In: Proc. 10th IEEE International Conference on Advanced Commu-
nication Technology (ICACT 2008), pp. 259–264. IEEE Press, New York (2008)

25. Chung, L., do Prado Leite, J.: On Non-Functional Requirements in Software Engineering.
In: Borgida, A.T., Chaudhri, V.K., Giorgini, P., Yu, E.S. (eds.) Conceptual Modeling:
Foundations and Applications. LNCS, vol. 5600, pp. 363–379. Springer, Heidelberg (2009)

26. Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-Functional Requirements in Soft-
ware Engineering. Kluwer Academic Publishers, Boston (1999)

27. Cote, M., Suryn, W., Georgiadou, E.: Software Quality Model Requirements for Soft-
ware Quality Engineering. In: Proc. 14th International Conference on Software Quality
Management (SQM 2006), pp. 31–50 (2006)

28. Cote, M.A., Suryn, W., Georgiadou, E.: In search for a widely applicable and accepted
software quality model for software quality engineering. Software Quality Journal 15,
401–416 (2007)

29. Dai, L., Cooper, K.: Modeling and analysis of non-functional requirements as aspects in
a UML based architecture design. In: Proc. 6th ACIS International Conference on Soft-
ware Engineering, Artificial Intelligence, Networking and Parallel/Distributed Comput-
ing (SNPD 2005), pp. 178–183. IEEE Press, New York (2005)

30. Davies, I., Green, P., Milton, S., Rosemann, M.: Analyzing and comparing ontologies
with meta-models. In: Krogstie, J., Halpin, T., Siau, K. (eds.) Information Modeling
Methods and Methodologies, pp. 1–16. Idea Group, Hershey (2005)

31. de Boer, R.C., van Vliet, H.: QuOnt: an ontology for the reuse of quality criteria. In:
Proc. ICSE Workshop on Sharing and Reusing Architectural Knowledge (SHARK
2009), pp. 57–64. IEEE Press, New York (2009)

32. Deissenboeck, F., Juergens, E., Lochmann, K., Wagner, S.: Software quality models:
Purposes, usage scenarios and requirements. In: Proc. 7th International Workshop on
Software Quality (WoSQ 2009), pp. 9–14. IEEE Press, New York (2009)

33. Deissenboeck, F., Wagner, S., Pizka, M., Teuchert, S., Girard, J.F.: An activity-based
quality model for maintainability. In: Proc. IEEE International Conference on Software
Maintenance (ICSM 2007), pp. 184–193. IEEE Press, New York (2007)

34. Deneckere, R., Iacovelli, A., Kornyshova, E., Souveyet, C.: From Method Fragments to
Method Services. In: Halpin, T., Krogstie, J., Proper, E. (eds.) Proc. 13th Intl Workshop
on Evaluation of Modeling Methods in Systems Analysis and Design (EMMSAD 2008).
CEUR-WS, vol. 337, pp. 80–96 (2008)

 On the Evolution of Quality Conceptualization Techniques 133

35. Dieste, O., Genero, M., Juristo, N., Moreno, A.M.: A Proposal of A Measure Of Com-
pleteness For Conceptual Models. In: Piattini, M., Genero, M., Calero, C. (eds.) Metrics
for Software Conceptual Models, pp. 19–57. Imperial College Press, London (2005)

36. Dinkel, M., Baumgarten, U.: Modeling nonfunctional requirements: a basis for dynamic
systems management. ACM Software Engineering Notes 30, 1–8 (2005)

37. Dromey, R.G.: Cornering the Chimera. IEEE Software 13, 33–43 (1996)
38. Eichberg, M., Awasthi, P., Ostermann, K.: Pointcuts as functional queries. In: Chin, W.-

N. (ed.) APLAS 2004. LNCS, vol. 3302, pp. 366–381. Springer, Heidelberg (2004)
39. Ekelhart, A., Fenz, S., Klemen, M., Weippl, E.: Security Ontology: Simulating Threats to

Corporate Assets. In: Bagchi, A., Atluri, V. (eds.) ICISS 2006. LNCS, vol. 4332, pp.
249–259. Springer, Heidelberg (2006)

40. Falbo, R.A., Guizzardi, G., Duarte, K.C.: An ontological approach to domain engineer-
ing. In: Proc. 14th International Conference on Software Engineering and Knowledge
Engineering (SEKE 2002), pp. 351–358. ACM Press, New York (2002)

41. Fenton, N., Pfleeger, S.L.: Software metrics: a rigorous and practical approach. PWS
Publishing, Boston (1997)

42. Firesmith, D.G., Capell, P., Hammons, C.B., Latimer, D.W., Merendino, T.: The Method
Framework for Engineering System Architectures. Auerbach Pubs, Boca Raton (2008)

43. Flake, S., Müller, W.: A UML profile for real-time constraints with the OCL. In: Li, J.,
Hussmann, H., Cook, S. (eds.) UML 2002. LNCS, vol. 2460, pp. 179–195. Springer,
Heidelberg (2002)

44. Fuentes, L., Sanchez, P.: Towards executable aspect-oriented UML models. In: Proc.
AOM Workshop at AOSD 2007, pp. 28–34. ACM, New York (2007)

45. Galster, M., Bucherer, E.: A taxonomy for identifying and specifying non-functional re-
quirements in service-oriented development. In: Proc. IEEE Congress on Services
(SERVICES 2008) - Part I, pp. 345–352. IEEE Press, New York (2008)

46. Gärdenfors, P.: Conceptual Spaces: A Geometry of Thought. MIT Press, Cambridge (2000)
47. Gasparini, I., Lichtnow, D., Pimenta, M.S., de Oliveira, J.P.M.: Quality Ontology for

Recommendation in an Adaptive Educational System. In: Proc. International Conference
on Intelligent Networking and Collaborative Systems (INCOS 2009), pp. 329–334. IEEE
Press, New York (2009)

48. Gilb, T.: Principles of Software Engineering Management. Addison Wesley, Reading (1988)
49. Glinz, M.: On Non-Functional Requirements. In: Proc. 15th IEEE International Confer-

ence on Requirements Engineering (RE 2007), pp. 21–26. IEEE Press, New York (2007)
50. Grassi, V., Mirandola, R., Sabetta, A.: From design to analysis models: a kernel language

for performance and reliability analysis of component-based systems. In: Proc. 5th Inter-
national Workshop on Software and Performance (WOSP 2005), pp. 25–36. ACM Press,
New York (2005)

51. Hakkarainen, S., Strasunskas, D., Hella, L., Tuxen, S.: Choosing appropriate method guide-
lines for web-ontology building. In: Delcambre, L.M.L., Kop, C., Mayr, H.C., Mylopoulos,
J., Pastor, Ó. (eds.) ER 2005. LNCS, vol. 3716, pp. 270–287. Springer, Heidelberg (2005)

52. Henderson-Sellers, B., Ralyte, J.: Situational Method Engineering: State-of-the-Art Re-
view. Journal of Universal Computer Science 16, 424–478 (2010)

53. IEEE 1061-1998: IEEE Standard for Software Quality Metrics Methodology. IEEE
Press, New York (1998)

54. ISO/IEC 9126-1, Software Engineering – Product Quality – Part 1:Quality model. Inter-
national Organization for Standardization (2001)

55. ISO/IEC FCD 25010: Systems and software engineering – System and software product
Quality Requirements and Evaluation (SQuaRE) – System and software quality models.
International Organization for Standardization (2010)

134 V.A. Shekhovtsov

56. Jureta, I.: Essays in Information Management: Contributions to the Modeling and Analy-
sis of Quality in Information Systems Engineering, PhD Thesis. Department of Business
Administration. University of Namur (2008)

57. Jureta, I., Mylopoulos, J., Faulkner, S.: A core ontology for requirements. Applied On-
tology 4, 169–244 (2009)

58. Jureta, I.J., Herssens, C., Faulkner, S.: A Comprehensive Quality Model for Service-
Oriented Systems. Software Quality Journal 17, 65–98 (2009)

59. Kabilan, V., Johannesson, P., Ruohomaa, S., Moen, P., Herrmann, A., Ehlfeldt, R.M.,
Weigand, H.: Introducing the Common Non-Functional Ontology. In: Gonçalves, R.J.,
Müller, J.P., Mertins, K., Zelm, M. (eds.) Enterprise Interoperability II, pp. 633–645.
Springer, Heidelberg (2007)

60. Kaschek, R., Pavlov, R., Shekhovtsov, V., Zlatkin, S.: Characterization and tool supported se-
lection of business process modeling methodologies. In: Abramowicz, W., Mayr, H.C. (eds.)
Technologies for Business Information Systems, pp. 25–37. Springer, Heidelberg (2007)

61. Kassab, M., Ormandjieva, O., Daneva, M.: An Ontology Based approach to Non-
Functional Requirements Conceptualization. In: Proc. 4th International Conference on
Software Engineering Advances (SEA 2009), pp. 299–308. IEEE Press, New York (2009)

62. Kayed, A., Hirzalla, N., Samhan, A.A., Alfayoumi, M.: Towards an Ontology for Soft-
ware Product Quality Attributes. In: Proc. 4th International Conference on Internet and
Web Applications and Services (ICIW 2009), pp. 200–204. IEEE Press, New York (2009)

63. Kazman, R., Bass, L., Klein, M., Lattance, T., Northrop, L.: A Basis for Analyzing Soft-
ware Architecture Analysis Methods. Software Quality Journal 13, 329–355 (2005)

64. Khomh, F., Gueheneuc, Y.G.: DEQUALITE: Building Design-based Software Quality
Models. In: Proc. SPAQU 2008 (2008)

65. Kim, E., Lee, Y.: Quality Model for Web Services 2.0. OASIS (2005)
66. Kim, H., Fox, M.S., Gruninger, M.: An Ontology of Quality for Enterprise Modelling.

In: Proc. ETICE 1995, pp. 105–116. IEEE Press, New York (1995)
67. Kitchenham, B., Pfleeger, S.L.: Software quality: the elusive target. IEEE Software 13,

12–21 (1996)
68. Koellmann, C., Kutvonen, L., Linington, P., Solberg, A.: An aspect-oriented approach to

manage QoS dependability dimensions in model driven development. In: Proc. 3rd Inter-
national Workshop on Model-Driven Enterprise Information Systems (MDEIS 2007), pp.
85–94. INSTICC Press (2007)

69. Kornyshova, E., Deneckere, R., Salinesi, C.: Method Chunks Selection by Multicriteria
Techniques: an Extension of the Assembly-based Approach. In: Ralyte, J., Brinkkemper,
S., Henderson-Sellers, B. (eds.) Situational Method Engineering: Fundamentals and Ex-
periences, pp. 64–78. Springer, Heidelberg (2007)

70. Krechetov, I., Tekinerdogan, B., Garcia, A., Chavez, C., Kulesza, U.: Towards an Inte-
grated Aspect-Oriented Modeling Approach for Software Architecture Design. In: Proc.
AOM Workshop at AOSD 2006 (2006)

71. Krogstie, J.: Integrating the understanding of quality in requirements specification and
conceptual modeling. ACM SIGSOFT Software Engineering Notes 23, 86–91 (1998)

72. Kumar, A., Grover, P.S., Kumar, R.: A quantitative evaluation of aspect-oriented software
quality model (AOSQUAMO). ACM SIGSOFT Software Engineering Notes 34, 1–9 (2009)

73. Lee, J.Y., Lee, J.W., Du Wan Cheun, S.D.K.: A Quality Model for Evaluating Software-as-a-
Service in Cloud Computing. In: Proc. SERMA 2009, pp. 261–266. IEEE, New York (2009)

74. Lera, I., Sancho, P.P., Juiz, C., Puigjaner, R., Zottl, J., Haring, G.: Performance assess-
ment of intelligent distributed systems through software performance ontology engineer-
ing (SPOE). Software Quality Journal 15, 53–67 (2007)

 On the Evolution of Quality Conceptualization Techniques 135

75. Lindland, O.I., Sindre, G., Solvberg, A.: Understanding quality in conceptual modeling.
IEEE Software 11, 42–49 (1994)

76. Magoutas, B., Halaris, C., Mentzas, G.: An Ontology for the Multi-Perspective Evalua-
tion of Quality in E-government Services. In: Wimmer, M.A., Scholl, J., Grönlund, Å.
(eds.) EGOV. LNCS, vol. 4656, pp. 318–329. Springer, Heidelberg (2007)

77. Malak, G., Badri, L., Badri, M., Sahraoui, H.: Towards a multidimensional model for
web-based applications quality assessment. In: Bauknecht, K., Bichler, M., Pröll, B.
(eds.) EC-Web 2004. LNCS, vol. 3182, pp. 316–327. Springer, Heidelberg (2004)

78. Masolo, C., Borgo, S.: Qualities in formal ontology. In: Hitzler, P., Lutz, C., Stumme, G.
(eds.) Proc. Workshop on Foundational Aspects of Ontologies (FOnt 2005), pp. 2–16 (2005)

79. Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A.: The WonderWeb Li-
brary of Foundational Ontologies. WonderWeb Deliverable D18. Ontology Library (fi-
nal). ISTC-CNR, Trento (2003)

80. McCall, J.A., Richards, P.K., Walters, G.F.: Factors in Software Quality. NTIS (1977)
81. McQuillan, J.A., Power, J.F.: Towards the re-usability of software metric definitions at

the meta level. In: ECOOP PhD Workshop (2006)
82. Mead, N.R., Hough, E.D., Stehney, T.R.: Security Quality Requirements Engineering

(SQUARE) Methodology. Software Engineering Institute, Stanford (2005)
83. Meier, S., Reinhard, T., Seybold, C., Glinz, M.: Aspect-Oriented Modeling with Integrated

Object Models. In: Modellierung 2006. LNI, vol. 82, pp. 129–144. GI, Bonn (2006)
84. Moody, D.L.: Theoretical and practical issues in evaluating the quality of conceptual mod-

els: current state and future directions. Data & Knowledge Engineering 55, 243–276 (2005)
85. Morasca, S.: A probability-based approach for measuring external attributes of software

artifacts. In: Proc. ESEM 2009, pp. 44–55. IEEE Press, New York (2009)
86. Nam, J.: Web portal quality. In: Proc. SOLI 2009, pp. 163–168. IEEE Press, New York

(2009)
87. Neuhaus, F., Grenon, P., Smith, B.: A formal theory of substances, qualities, and univer-

sals. In: Varzi, A., Vieu, L. (eds.) FOIS 2004, pp. 49–59. IOS Press, Amsterdam (2004)
88. Obrst, L., Ceusters, W., Mani, I., Ray, S., Smith, B.: The Evaluation of Ontologies To-

ward Improved Semantic Interoperability. In: Baker, C.J.O., Cheung, K.-H. (eds.) Se-
mantic Web: Revolutionizing Knowledge Discovery in the Life Sciences, pp. 139–158.
Springer, Heidelberg (2007)

89. Olive, A.: Conceptual Modeling of Information Systems. Springer, Heidelberg (2007)
90. Pastor, O., Molina, J.C.: Model-Driven Architecture in Practice. Springer, Heidelberg (2007)
91. Piattini, M., Genero, M., Poels, G., Nelson, J.: Towards a Framework for Conceptual

Modelling Quality. In: Piattini, M., Genero, M., Calero, C. (eds.) Metrics for Software
Conceptual Models, pp. 1–18. Imperial College Press, London (2005)

92. Plaza, I., Igual, R., Marcuello, J.J., Sanchez, S., Arcega, F.: Proposal of a Quality Model
for Educational Software. In: Proc. EAEEIE 2009, pp. 1–6 (2009)

93. Ralyte, J., Deneckere, R., Rolland, C.: Towards a generic model for situational method
engineering. In: Eder, J., Missikoff, M. (eds.) CAiSE 2003. LNCS, vol. 2681, pp. 95–
110. Springer, Heidelberg (2003)

94. Riaz, M., Mendes, E., Tempero, E.: A systematic review of software maintainability pre-
diction and metrics. In: Proc. ESEM 2009, pp. 367–377. IEEE Press, New York (2009)

95. Rodríguez, A., Fernández-Medina, E., Piattini, M.: Capturing Security Requirements in
Business Processes Through a UML 2.0 Activity Diagrams Profile. In: Roddick, J., Ben-
jamins, V.R., Si-said Cherfi, S., Chiang, R., Claramunt, C., Elmasri, R.A., Grandi, F., Han,
H., Hepp, M., Lytras, M.D., Mišić, V.B., Poels, G., Song, I.-Y., Trujillo, J., Vangenot, C.
(eds.) ER Workshops 2006. LNCS, vol. 4231, pp. 32–42. Springer, Heidelberg (2006)

136 V.A. Shekhovtsov

96. Rolland, C.: Method engineering: towards methods as services. In: Wang, Q., Pfahl, D.,
Raffo, D.M. (eds.) ICSP 2008. LNCS, vol. 5007, pp. 10–11. Springer, Heidelberg (2008)

97. Saeki, M.: Embedding metrics into information systems development methods: An appli-
cation of method engineering technique. In: Eder, J., Missikoff, M. (eds.) CAiSE 2003.
LNCS, vol. 2681, pp. 374–389. Springer, Heidelberg (2003)

98. Schauerhuber, A., Schwinger, W., Kapsammer, E., Retschitzegger, W., Wimmer, M.:
Towards a common reference architecture for aspect-oriented modeling. In: Proc. AOM
Workshop at AOSD 2006. ACM, New York (2006)

99. Shekhovtsov, V.A., Kop, C., Mayr, H.C.: Capturing the Semantics of Quality Require-
ments into an Intermediate Predesign Model. In: Hesse, W., Oberweis, A. (eds.): SIG-
SAND-EUROPE 2008 Symposium. LNI, vol. P-129, pp. 25–37. GI, Bonn (2008)

100. Shim, B., Choue, S., Kim, S., Park, S.: A Design Quality Model for Service-Oriented Ar-
chitecture. In: Proc. APSEC 2008, pp. 403–410 (2008)

101. Sibisi, M., van Waveren, C.C.: A process framework for customising software quality
models. In: Proc. AFRICON 2007, pp. 1–8 (2007)

102. Soeldner, G., Kapitza, R., Schober, S.: AOCI: ontology-based pointcuts. In: Proc. 8th
Workshop on Aspects, Components, and Patterns for Infrastructure Software, pp. 25–30.
ACM, New York (2009)

103. Stefani, A., Xenos, M.: E-commerce system quality assessment using a model based on
ISO 9126 and Belief Networks. Software Quality Journal 16, 107–129 (2008)

104. Stein, D., Hanenberg, S., Unland, R.: Query Models. In: Baar, T., Strohmeier, A., Moreira, A.,
Mellor, S.J. (eds.) UML 2004. LNCS, vol. 3273, pp. 98–112. Springer, Heidelberg (2004)

105. Suryn, W., Abran, A., Laporte, C.: An integrated life cycle quality model for general
public market software products. In: Proc. BSI 2004, pp. 5–7 (2004)

106. Susi, A., Perini, A., Mylopoulos, J.: The Tropos Metamodel and its Use. Informatica 29,
401–408 (2005)

107. Tian, J.: Quality-Evaluation Models and Measurements. IEEE Software 21, 84–91 (2004)
108. Tsadimas, A., Nikolaidou, M., Anagnostopoulos, D.: Handling non-functional require-

ments in Information System Architecture Design. In: Proc. SEA 2009, pp. 59–64. IEEE
Press, New York (2009)

109. UML Profile for Schedulability, Performance, and Time, version 1.0. OMG (2003)
110. van de Weerd, I., Brinkkemper, S.: Meta-modeling for situational analysis and design

methods. In: Handbook of Research on Modern Systems Analysis and Design Technolo-
gies and Applications, pp. 35–54. IGI Global, Hershey-New York (2009)

111. Wada, H., Suzuki, J., Oba, K.: Modeling Non-Functional Aspects in Service Oriented
Architecture. In: Proc. SCC 2006, pp. 222–229. IEEE Press, New York (2006)

112. Wagner, S., Deissenboeck, F.: An integrated approach to quality modelling. In: Proc.
WoSQ 2007. ACM, New York (2007)

113. Wagner, S., Lochmann, K., Winter, S., Goeb, A., Klaes, M.: Quality models in practice: A
preliminary analysis. In: Proc. ESEM 2009, pp. 464–467. IEEE Press, New York (2009)

114. Wu, C., Lin, H.L.: Integrating fuzzy theory and hierarchy concepts to evaluate software
quality. Software Quality Journal 16, 263–276 (2008)

115. Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., Chang, H.: QoS-
aware Middleware for Web Services Composition. IEEE Transactions on Software Engi-
neering 30, 311–327 (2004)

116. Zhou, J., Niemelä, E., Evesti, A.: Ontology-Based Software Reliability Modelling. In:
Proc. SSVM 2007, pp. 17–31 (2007)

117. Zhu, L., Gorton, I.: UML Profiles for Design Decisions and Non-Functional Require-
ments. In: Proc. ICSE Workshop on Sharing and Reusing Architectural Knowledge
(SHARK 2007). IEEE Press, New York (2007)

	06 On the Evolution of Quality Conceptualization Techniques
	On the Evolution of Quality Conceptualization Techniques
	Introduction
	A Concept of Quality
	Quality Conceptualization Techniques: Dimensions of Evolution
	Conceptualization Process Dimensions
	Quality Properties Support Dimensions
	Quality Perception Support Dimensions
	Quality Usage Support Dimensions
	Applicability Dimensions

	Towards a QCT Evaluation Framework
	Evaluating Quality of Quality Conceptualizations
	Engineering Quality Conceptualizations for Situational Methods

	Related Work
	Conclusions and Future Work
	References

