
172

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 8

CONTEXT AND MOTIVATION

Our work focuses on the elicitation and modeling 
of service and business process quality require-
ments within the context of Service-Oriented 
Architecture and Process-aware Information 
Systems (PAIS) (Dumas, Van der Aalst, & ter 

Hofstede, 2005) that are facilitated by computer 
applications such as BPM engine (workflow 
management system).

Requirements concerning system quality are 
often referred to as non-functional requirements 
in order to distinguish them from what tradition-
ally is just called requirements in the realm of 
information systems and only covers functional 
system aspects. We consider quality requirements 

Vladimir A. Shekhovtsov
National Technical University “Kharkiv Polytechnic Institute”, Ukraine

Roland Kaschek
Information Science Research Center, New Zealand

Christian Kop
Alpen-Adria-Universität Klagenfurt, Austria

Heinrich C. Mayr
Alpen-Adria-Universität Klagenfurt, Austria

Relational Service 
Quality Modeling

ABSTRACT

The paper argues that using non-first-normal-form (NF2) tables for requirements modeling is a suitable 
approach for communicating application system issues to stakeholders who have a business background. 
In particular, such tables are used in an intermediate predesign step residing between requirements 
elicitation and conceptual design for modeling functional and quality requirements of services and busi-
ness processes. This approach extends to quality requirements of business processes used for service 
orchestration.

DOI: 10.4018/978-1-60566-794-2.ch008



173

Relational Service Quality Modeling

regarding a system under development (SUD) 
as a specification of the quality that the SUD is 
expected to have in order to be fit for use. Thus, 
featuring the right functionality, i.e. implement-
ing the functional requirements, might be one 
quality aspect among others. Within the context 
of SOA, quality requirements are related to both 
individual services and orchestrations thereof, i.e. 
business processes.

Elicitation and modeling of quality require-
ments is important and challenging because:

1.  System development is often driven by 
stated requirements rather than stakeholder 
needs; inappropriate quality requirements 
likely are going to waste resources spent 
for development.

2.  Requirements engineering is about system 
branding, i.e., conceptually shaping or 
working out the related SUD. Using abstract 
design-time notions (classes, attributes, ac-
tivities etc.) at that stage of the development 
lifecycle for describing system qualities 
might compromise that branding, as the 
chosen concepts might be inappropriate for 
stakeholder understanding and validation.

3.  In future, automated service selection, 
based on automated negotiations, is likely 
to take place. These negotiations involve 
service quality characteristics such as per-
formance, security, cost, risk, and similar. 
That approach obviously has the potential 
to fundamentally change the way web ap-
plications are created.

Our approach is built on the predesign tech-
nique described in (Kop & Mayr, 2002; Mayr & 
Kop, 1998; Shekhovtsov, Kop, & Mayr, 2008) 
which is about modeling functional requirements 
for information systems. Our approach aims at 
quality requirements as opposed to functional ones, 
and focuses on services and business processes. 
For empowering stakeholders to cope with service 
and business process quality issues we propose 

using a simple but sufficiently expressive semantic 
model for addressing the relevant concepts. That 
model is represented as a non-first-normal-form 
(NF2) relational model (Schek & Pistor, 1982) 
permitting repetition groups and nested relations. 
In the present context we call a NF2 table glossary. 
Its advantage is that it allows for the specifica-
tion of any relationship between any number of 
given concepts. In mathematics such a definition 
of concepts in terms of each other and relation-
ships among them is called an implicit definition 
or axiomatization.

Experience from practice suggests that stake-
holders having a business background with relative 
ease understand predesign models because they 
come along in the well-known shape of tables 
(Galle, Kop, & Mayr, 2008; Janicki, Parnas, & 
Zucker, 1997). The conceptual predesign model 
also is suitable for model mapping. For static and 
dynamic aspects it was shown that predesign mod-
eling notions can be mapped into class diagrams, 
activity diagrams and state charts (Kop & Mayr, 
2002; Mayr & Kop, 1998) or modeling notions 
of business process models can be derived from 
them (Mayr, Kop, & Esberger, 2007). The aim is 
to guarantee such a mapping flexibility also for 
quality requirements. Our approach, as suggested 
by (Mayr, 2006; Pastor, 2006), thus enables both: 
focusing on requirements and stakeholders’ needs, 
and model mapping onto design notation such as 
UML and further onto executable code.

In addition, using a unified tabular (relational) 
representation for requirements allows users to 
perform relational queries over requirements 
repositories using a domain-specific SQL-like 
language. This will be illustrated by examples 
later in the chapter.

The chapter is organized as follows: in the 
next section we discuss the foundations of our 
work and rationalize in favor of our approach. 
Then we apply our approach to capture service 
and process quality requirements. The paper is 
completed with a discussion of the related work 
and a conclusion.



174

Relational Service Quality Modeling

MODELING SERVICE AND 
BUSINESS PROCESS QUALITY

We consider quality of an artifact as that arti-
fact’s fitness for a specified kind of use. Thus, 
when a particular kind of use is considered we 
aim at defining quality characteristics which aid 
in discussing that particular fitness for use. Our 
quality requirements model therefore builds on 
the concept of service or business process quality.

For working out a conceptual framework of 
requirements models we briefly look into qual-
ity requirements metamodels. The paper (Jureta, 
Herssens, & Faulkner, 2008) has suggested a 
related metamodel. We reuse that paper’s qual-
ity requirements metamodel, add a number of 
metamodel characteristics that have been missed 
out by that paper, and adapt the terminology to 
our purposes. We call these quality requirement 
metamodel characteristics quality model param-
eters because they affect the quality model without 
being an explicit part of it.

We identify the following quality model pa-
rameters:

1.  Context: the considered circumstances of 
a service or process execution request.

2.  Dependency: the permitted relationships 
between different quality characteristics.

3.  Priority: the importance of quality 
characteristics.

4.  Schema: the kind of organization of the 
quality characteristics (taxonomy, ontology 
etc.).

5.  Scoring: the concepts and rules for scoring 
requirements.

6.  Stakeholder: the stakeholders whose re-
quirements are to be considered.

7.  Status: a given requirement model’s life 
cycle phase.

8.  Polymorphy: whether or not a quality re-
quirement’s metamodel is fixed.

9.  Version: a given requirement model’s ver-
sion number.

Service and Business 
Process Quality Models

To describe service quality issues, the concept of 
Quality of Service (QoS) is widely used. It roots 
in the research on network-related service delivery 
performance and reliability. Currently it is usually 
understood in broader sense – as a synonym for 
service quality in general.

Service and Business Process 
Quality Taxonomies

The number of service quality models that employ 
a taxonomy of quality characteristics (possess-
ing the schema parameter value of taxonomy) is 
quite large and we discuss only a small subset of 
them. Most taxonomy-based models addresses 
QoS (Dobson, 2004; Evans & Filsfils, 2007). The 
models in (Chaari, Badr, Biennier, BenAmar, & 
Favrel, 2008; Galster & Bucherer, 2008; Ran, 
2003) utilize QoS. (Al-Masri & Mahmoud, 2008; 
Andreozzi, Montesi, & Moretti, 2003; O’Sullivan, 
Edmond, & ter Hofstede, 2002; Zeng et al., 2004) 
refer to a general notion of quality with application 
to services. We will not make further distinctions 
between these two categories of models.

A number of efforts address the standardiza-
tion of service quality models. For example, OA-
SIS published the Web Services Quality Model 
(WSQM) (E. Kim & Lee, 2005; Lee & Yeom, 
2007). It is intended to serve all the associated 
bodies. There are models utilizing existing qual-
ity model standards, such as the SQuaRE series 
of quality standards (ISO/IEC 250xx) (Abramo-
wicz, Zyskowski, Suryn, & Hofman, 2007). In 
our further examples, we will use WSQM as an 
example of comprehensive service quality model. 
The approach of (Lee & Yeom, 2007) adds the 
concept of quality chain to WSQM for address-
ing dependency quality model parameter. The 
stakeholder parameter is addressed by WSQM 
as it allows for detailed treatment of the abili-



175

Relational Service Quality Modeling

ties of stakeholders to express different quality 
requirements.

Most of the quality models for business pro-
cesses are taxonomies of quality characteristics 
(Aburub, Odeh, & Beeson, 2007; Guceglioglu & 
Demirors, 2005). Low-level quality characteristics 
are accompanied with metrics (Lee, Bae, & Shin, 
2005; Vanderfeesten, Cardoso, Mendling, Reijers, 
& van der Aalst, 2007).

Mostly, regarding polymorphy, the value fixed 
is employed, i.e. the resp. models do not allow 
to define additional characteristics or metrics. 
(Liu, Ngu, & Zeng, 2004) propose a model which 
employs the parameter value float. It permits to 
obtain numerical scores for the requirements 
model quality. Changing the requirements model 
metamodel is guaranteed by uniformity of QoS 
calculation which does not depend on particular 
quality characteristic.

Service Quality Ontologies

Quality can also be conceptualized as an ontology. 
Most related approaches draw from semantic web 
services concepts; we will describe them together 
with a discussion of the possible mapping of our 
predesign model into such conceptualization in 
the “related work” section. In this section, we 
briefly mention several ontologies not directly 
connected to the Semantic Web.

A set of requirements for two unified ontolo-
gies: specific QoS ontology and Service-Level 
Agreement ontology (including, among others, 
notions for QoS requirements) is presented in 
(Dobson & Sanchez-Macian, 2006). An ontologi-
cal approach for QoS representation introduced in 
(Zhou, Niemelä, & Savolainen, 2007) is based on 
two levels of ontologies: an upper-level QoS ontol-
ogy introducing such domains as entity, people, 
process, property and means and lower-level 
ontologies for these domains (with an example of 
QoS property lower-level ontology actually con-
ceptualizing the quality model). Another ontology 
representing QoS requirements (subdivided into 

requirement, measurement, traceability, and qual-
ity management system ontologies) is presented 
in H. M. Kim, Sengupta, and Evermann (2007).

PREDESIGN CONCEPTS

The proposed technique merges two mutu-
ally supplementing approaches: an approach to 
model functional requirements for services and 
business processes and an approach to model 
quality requirements: In this section, we outline 
the common properties of these approaches; 
approach-specific concepts will be covered in the 
subsequent sections.

Predesign Process

We propose a five step predesign process for 
requirements elicitation and modeling. Note that 
the first two steps are drawn from requirements 
engineering and only the remaining steps are 
predesign specific. Therefore we will not step into 
much detail of the first two steps but concentrate 
on the remaining ones (3 to 5) instead. Note that 
not all approaches to perform Step 3 depend on 
performing the previous steps. The predesign 
process steps are supposed to be iterated, as long 
as no more need for change is felt:

Step 1: Identify the relevant actors, tasks 
and quality concerns. Before any elicitation of 
requirements can start the right tasks and actors 
have to be decided upon. The identification of 
actors is an iterative task itself since the require-
ments engineer typically has to start with persons 
nominated by management and then to find out 
other relevant people, i.e., stakeholders who might 
provide relevant information about important tasks 
or for a task at hand: e.g., persons who are interested 
that the project will become a success, opinion 
leaders for the project, or persons affected by the 
execution of the task. During each interview, the 
meta question should be asked: “whom else can I 
interview to certain aspects of what you have told 



176

Relational Service Quality Modeling

me?” thus establishing iteration. Among others 
this is a simple rule of thumb to get in contact 
with candidates for actors.

Examples of actors are humans and organiza-
tional units. Actors and tasks will later be related 
to each other by the association “is responsible 
for”. We provide special tables, in particular 
“organizational unit/task” and “task/information 
provider” to help in organizing this step.

Step 2: Establish a requirements elicitation 
plan. For questioning actors, a kind of schedule 
and guideline should be worked out. This, in our 
opinion, will be quite project specific, neverthe-
less, it is good practice to start at the management 
level going to the operative level next. Managers 
can draw an overview of the planned system’s aims 
and concerned people although will not utter many 
operative details (functionality of the system). 
Besides, early decision maker participation makes 
them feeling responsible which may substantially 
strengthen the requirements engineer’s position.

Furthermore it has to be decided on require-
ments priorities from indispensable to “nice to 
have”. This will help to avoid getting lost in detail 
discussions about unnecessary features.

Step 3: Collect detailed requirements ac-
cording to the elicitation plan. The conventional 
technique is to elicit requirements via interviews 
or brainstorm sessions. This way, free-form or 
structured answers to interview questions will be 
obtained as raw input data for predesign. In ad-
dition to that even entire free-text specifications 
may be used and transformed (semi)- automati-
cally into glossary entries using natural language 
processing techniques (see, e.g., (Fliedl, Kop, 
Mayerthaler, Mayr, & Winkler, 2002)). All entries 
will be indexed by task, stakeholder, organiza-
tional unit, date, etc., and, if necessary, manually 
revised (finding implicit information, eliminating 
redundancies, etc.).

Collecting requirements based on specifica-
tion texts is convenient only if these texts can 
be obtained easily. Concerning quality require-
ments we have to encounter that the known 

problem stakeholders usually have with uttering 
requirements without experiencing the system 
even grows. Without such experience they are 
forced to be speculative and, as a result, formu-
late requirements that need to be further refined 
and corrected. To solve this problem (Kaschek, 
Kop, Shekhovtsov & Mayr, 2008) proposed a 
tool-supported approach providing stakeholders 
with a means for experiencing software qualities 
in a simulated working environment as early as 
possible, and assessing these simulated qualities 
using some defined scale. This approach will also 
provide requirements engineers with a means 
for eliciting quality requirements out of such 
assessments.

Step 4: Organize the elicited requirements. 
We propose a specific predesign model to orga-
nize the elicited requirements. It consists of a set 
of predesign glossaries representing a small set 
of modeling concepts that are intuitively under-
standable and verifiable by stakeholders; this is 
enhanced by the tabular glossary representation 
which is well-known to our intended audience, 
i.e., business people. After verification, the re-
quirements glossaries have to be mapped onto a 
design-time representation (predesign mapping 
step) which will be discussed in detail in this 
chapter.

Step 5: Transformation to conceptual sche-
ma or update of actors, tasks, requirements, 
and requirements elicitation plan. According to 
whatever respective need is found during steps 1 
to 4 the requirements collected in the predesign 
model are, if necessary, validated, updated and 
refined, and finally transformed to a conceptual 
schema. Note, that this process might be iterative 
in case of more sophisticated information systems.

A graphical summary of the process can be 
seen in Figure 1.

Predesign Metamodeling Hierarchy

The predesign process runs along a model hierar-
chy consisting of three layers: object-model (M1), 



177

Relational Service Quality Modeling

meta-model (M2) and NF2 or meta-metamodel 
(M3).

The object model layer allows defining par-
ticular models that describe the requirements for 
the case at hand. These predesign models consist 
of a small set of concepts, can be verified by 
stakeholders and later mapped into design. The 
predesign concepts represent things in a real world 
or their attributes or operations etc. Higher in 
the metamodel hierarchy, the predesign model is 
defined via a predesign metamodel which is an 
object-oriented depiction of predesign concepts 
(a concept corresponds to a metaclass). On top, 
the predesign meta-metamodel layer describes the 
way of representing the metamodeling structures. 
We propose to use the Non-First-Normal Form 
(NF2) relational notion for this layer.

We define a predesign glossary as a NF2-table 
view over our metamodel populated with data. This 
approach is valid due to the following observations 
(along the lines of Codd, 1979):

1.  Within the relational context, any object 
identity can be modeled by a tuple identifier.

2.  Object methods can be modeled by tables 
that on request will be joined with the table 
holding the object’s basic data.

3.  Each of the metamodel diagrams can have 
a relational representation.

Different predesign glossaries will be defined 
in detail subsequently.

Example Requirements Specification

Our further description of predesign techniques 
will be based on a simple example of both service 
and business process requirements specifications 
which include functional and quality requirements. 
For brevity, implementation constraints are not 
included, and the number of requirements is kept 
rather small. We list the requirements for a set of 
order processing services: (Figure 2).

1)  Order processing services should allow the 
order department to perform:
(S1) order acceptability check;
(S2) relating the items to the order;
(S3) order confirmation;
(S4) order rejection; and
(S5) order postponing.

2)  Order processing services should allow the 
stock clerk to perform:
(S6) stock item top-up;

3)  Authorization services should allow the 
bookkeeping department to perform:
(S7) payment authorization;

4)  Authorization services should allow the order 
processing services to perform:
(S8) user authorization check.

5)  The order processing services must have the 
following qualities:
(S9) The response time to user actions 

related to orders and order items is 
below 0.5 sec.

(S10) The response time to any payment 
authorization is below 0.3 sec.

(S11) The response time to any stock items 
top-up for dialup connection requests is 
below 2 sec for a load up to 500 users 
and below 5 sec for a higher load; it 
is below 0.5 sec for all other requests.

Figure 1. The predesign process



178

Relational Service Quality Modeling

(S12) Any operation performed by the or-
der department has highest possible 
availability.

(S13) Stock item top-up has second highest 
availability.

(S14) Only authorized users can use the 
order processing service.

6)  The business process for order processing 
is defined as follows (Fowler, 2005):
(S15) The order comes in.
(S16) The order department for each ordered 

item checks its availability on stock.
(S17) If each ordered item is on stock, then 

the order department relates that item 
to the order.

(S18) If the item quantity on stock is below 
the threshold, then the stock clerk 
orders this item for the stock.

(S19) If the order comes in, the bookkeeping 
department checks the payment.

(S20) If the payment is authorized and all 
ordered items are on stock, then the 
order department confirms the order.

(S21) If payment is authorized and some 
items are not on stock, then the order 
department marks the order as pending.

(S22) If the payment is not authorized, then 
the order department must reject the 
order.

7)  The business process for order processing 
must have the following qualities:
(S23) The availability of all the operations 

performed if order comes in must 
exceed 99%.

(S24) The activities performed if the order 
is rejected must have the response time 
below 0.3 sec.

In the next two sections, we will describe 
how the proposed predesign technique allows for 
modeling functional and quality requirements. 
These two parts of the predesign process must be 
performed together to form the common predesign 
model using the appropriate metamodel. We will 
describe the metamodels for these two kinds of 

Figure 2. Requirements displayed on predesign object model, metamodel and NF2 meta-metamodel level



179

Relational Service Quality Modeling

requirements separately but actually they are both 
parts of the same predesign metamodel.

RELATIONAL PREDESIGN 
OF FUNCTIONALITY

The predesign technique for functionality present-
ed in this paper is based on a technique described 
in (Kop & Mayr, 2002; Mayr & Kop, 1998). The 
corresponding part of the predesign metamodel 
is shown on Figure 3.

The most general concept of functionality 
predesign is ModelingElement. It permits referring 
to any phenomena and, among others, is special-
ized into thing-type and connection-type. The 
concept ThingType generalizes conceptual notions 
such as class, entity, attribute, or value. The in-
stances of the concept ConnectionType are rela-
tionships between instances of thing-types. Any 
such relationship is considered as a set of Perspec-
tives. Each perspective of a relationship models 
the contribution instances of the resp. involved 
thing-type have in that relationship. Typical in-
stances of thing-types are natural or juristic per-
sons, material or immaterial objects, abstract 
notions. In textual requirements specifications 
they are usually referred to by noun phrases.

Predesign models include a statics and a 
dynamics submodel, having operation invariant 
and dependent information, respectively. Thing-
types and connection-types constitute the statics 
predesign submodel. The dynamics submodel 
consists of OperationTypes (defining the permitted 
operations) and CooperationTypes including pre 
and post-conditions for operation execution (Kop 
& Mayr, 2002; Mayr et al., 2007).

The metamodel includes (among others) the 
“is synonym to” link permitting the use of syn-
onyms. Examples can be specified for all predesign 
concepts; this is represented via “illustrate” link. 
Concept versioning is supported with a “version” 
attribute of ModelingElement.

Glossary-Based Modeling Using 
Thing-Types and Connection-Types

First two kinds of predesign glossaries are thing-
type and connection-type glossaries. They are 
NF2 representations of the metamodels for the 
corresponding predesign notions.

We need to introduce thing-types and connec-
tion-types present in our domain, as we will use 
these types throughout the example model. The 
corresponding glossaries are shown on Table 1.

Figure 3. Part of the predesign metamodel describing the model for functional requirements



180

Relational Service Quality Modeling

Using Operation-Types to Model 
Service Functional Requirements

Following (Mayr et al., 2007) we model software 
services using the concept of operation-type. The 
corresponding metamodel is shown in Table 2. 
Every operation-type is related to its executing 
actor, originating actor(s), and resources such as 
operation subject and auxiliary or associated ma-
terials (operation parameters). These are referred 
to as involved thing-types.

The requested operation-types are to be col-
lected into an operation-type glossary (see Table 
2).

Using Cooperation-Types 
to Model Business Process 
Functional Requirements

The business process functionality is the set of 
permitted service flows as specified via the busi-
ness process definition.

Following (Mayr et al., 2007) our organization 
modeling concepts are: Organization, the whole 
entity such as a tax office or municipal admin-
istration; Department and/or Project Group, i.e., 
functioning subunits of an organization; Position, 
atomic organization subunits which are occupied 
by a set of actors; Citizen, Customer, Supplier 
– organization external actors interacting with 

Table 1a. Thing-type and connection-type 

id# name classification quantity 
estimate examples value 

domain
req. 

source

D1 order pocessing service service 1 S1, S,S3, S4, 
S5, S6

D2 security service service 2 S7

D3 Ordr thing 1000 S1, S, S3, S4, 
S5, S6

D4 order date attribute 365 2008-01-04 date

D5 order iem thing 100000 1 ton o cement S1, S2, S6

D6 order department organization 1 S1, S2, S3, S4, 
S5

D7 stock clerk person 5 John Do S6

D8 Payment thing 1000 currec S7

D9 bookkeeping department organization 1 S7

D10 User person 200 S8

Table 1b. Thing-type glossary examples 

c-id# name …
Perspective

requirements source
p-id# involved thing-type name

C001 containent p001a D3, order contains S1, S2, S6

p001b D5, order item is contained in

C002 attribute possessing p002a D3, Order has an attribute

p002b D4, order date is an attribute of



181

Relational Service Quality Modeling

it; Resource and Document, used during task 
execution. They are materialized as thing-type 
instances. Any such instance providing or using 
a service occupies the role of actor executing or 
initiating that service, respectively. In addition, 
we use the concepts of Task and Service Flow, 
i.e., elementary and composite activity in favor 
of the organization’s goals. Any service flow of 
an organization is described as network of tasks 
each of which is executed by a position. Any task 
may have inputs and outputs.

To generalize service flow modeling notions, 
(Kop & Mayr, 2002; Mayr et al., 2007) introduce 
the concept cooperation-type. A cooperation-type 
C is a triple (–C, C(O), C+) of pre- and post-
condition sets –C and C+, respectively, and the 
set C(O) of operation-types contained in C. For 
two cooperation-types C and D the concurrent 
composition of operation-types C(O) and D(O) is 
defined for –C = –D and C+ = D+. The sequential 
composition C(O) before D(O) is defined for C+ 
= –D.

Tasks and positions are modeled as operation-
type and task executing actor, respectively. To any 
task set there is thus associated a set of pre- and post 

conditions, respectively. Task inputs and outputs 
are modeled as thing-types related to operation-
types as parameters. Any business process phases 
are modeled as cooperation-types. An excerpt from 
a cooperation-type glossary is shown on Table 3. 
Among other tabular requirements modeling ap-
proaches, the closest counterpart of this glossary 
is a mode transition table used in SCR method 
(Heitmeyer, 2007).

RELATIONAL PREDESIGN OF 
QUALITY

A part of the common meta-model describing the 
predesign model for service and business processes 
quality requirements is shown on Figure 4. For 
obtaining it we have used the papers (Aburub 
et al., 2007), (Kassab, Ormandijeva, & Daneva, 
2008), and (Jingbai, Keqing, Chong, & Wei, 2008).

A quality requirement is essentially an utter-
ance declaring that something should be in a 
particular and specified way. The metamodel 
depicts this via the metaclass QualityRequirement. 
Quality requirements may impact each other. Each 

Table 2. Example operation-type glossary 

id# Name classification
involved thing-types

requirements source
id# name type

O1 check iems service operation D1 order processing service executing S1

D6 order department calling

D5 order item parameter

O4 relate items to 
order

service operation D1 order processing service executing S2

D6 order department calling

D3 order parametr

D5 order item parameter

O7 authorize 
payment

service operation D2 security service executing S7

D9 bookkeeping department calling

D8 payment parameter

O8 authenticate 
user

service operation D1 order processing service executing S8

D2 security service calling

D10 user parametr



182

Relational Service Quality Modeling

such impact has a number of givers and takers. 
The attributes of an impact are quality and modal-
ity. Quality means supporting or hindering to 
achieve the satisfaction of the quality requirement. 
Modality means the extent to which achieving of 

that requirement’s satisfaction can be supported 
or hindered. A quality requirement’s satisfaction 
can be scored as a value in {0,1}, [0,1], or differ-
ent. For simplicity we avoid including into that 
metamodel a facility for specifying the escalation 

Table 3. Example cooperation-type glossary 

id#
Pre-condition Operation Post-condition

req. 
sourceid# name involved 

types id# name involved types id# name involved 
types

E1 C1 order comes 
in

D3, Order O7 check 
pay-
ment

D2, security service 
D9, bookkeeping 
department 
D8, Payment

C2 payment is autho-
rized

D8, Payment S15, S19

alternate

C3 payment is not 
authorized

D8, Payment

in parallel

O1 check 
all 
items

D1, order process-
ing service 
D6, order depart-
ment 
D5, Order

C4 all articles are in 
stock

D3, Order S15, S16

alternate

C5 not all articles are 
in stock

D3, Order

E2 C3 payment is 
not autho-
rized

D8, Pay-
ment

O5 reject 
order

D1, order process-
ing service 
D9, bookkeeping 
department 
D3, Order

C6 order is rejected D3, Order S22

Figure 4. Part of the predesign metamodel describing the model for quality requirements



183

Relational Service Quality Modeling

of requirements satisfaction from sub-require-
ments to super requirement and vice versa. Qual-
ity requirement is a composite of Stakeholder 
(representing the person responsible for verifying 
the requirement), Occasion (representing the 
information related to the specific case of eliciting 
the requirement), the requirement Status (its 
meta-attributes include version, priority reflecting 
its importance, cost of non-meeting the require-
ment reflecting its urgency etc), and Requirement-
Condition, i.e., the one which is actually re-
quested by the requirement.

We propose to employ two kinds of condition: 
static and dynamic ones. Furthermore, conditions 
can be in Relations to other conditions. A condition 
relation is defined as the composite of a number 
of Roles. If a condition is in a relation to another 
condition that it can play (in that relation) only 
play roles that are defined for that relation.

Dynamic Conditions: Connecting 
Quality and Functionality

At the instance level, dynamic conditions include 
a number of functional item conditions connect-
ing this requirements with artifacts defined in the 
functionality-related part of the predesign model. 
We consider three kinds of functional items: 
activity (represented via operation-type), event 
(represented via cooperation-type), and actor 
(represented via thing-type). These three kinds of 
conditions allow us to represent the set of require-
ments for both services and business processes.

To describe this relationship, we show a 
connection between a DynamicCondition and a 
ModelingElement. This connection reflects the 
scope of a quality requirement, i.e., the set of 
functional model elements it affects. It is easy to 
conclude that in our model, the scope of a quality 
requirement is a set of functional items (actors, 
operations, and events). This set is formed based 
on the set of the item conditions (depicted via 

the ItemCondition metaclass) belonging to this 
requirement.

Calling Contexts

Services can be called in different contexts and 
that calling context may impact the required or 
possible quality (Wada, Suzuki, & Oba, 2006). To 
reflect this fact, for each functional item condition 
a Context can be specified and a rule that applies 
to an item instance of that kind if the context is the 
specified one. For example, consider an event such 
as “the order arrives” then this way we can specify 
that another event must take place and can even 
specify alternative responses by distinguishing 
different contexts. Context belongs to a specific 
ContextType (such as “connection” or “load”), 
for example “dialup” and “broadband” contexts 
belongs to a context type “network connection”. 
We can also have a default or void context for the 
cases when the specification indicates that the rule 
always applies to that item instance.

Among the rules, we distinguish conditional 
(if-then-else) rules, and negative rules (permitting 
to specify that events must not occur under certain 
circumstances). Actors have a portfolio of opera-
tions they are entitled to perform under specified 
circumstances. item condition allows to change 
that portfolio for specified contexts.

Static Conditions: Integrating 
the Quality Model

A static condition is assumed to be a composite 
of elementary conditions each of which has speci-
fied parts and each of which has a quality, i.e., 
can be required to take place or be prohibited. 
The specified parts of such condition include a 
QualityMetric (described below), a Comparator 
and the ValueSet that describes a threshold for 
the given requirement. For example, requirement 
S11 above employs the comparator below and the 
threshold value 2 sec.



184

Relational Service Quality Modeling

Glossary Representation of the 
Quality Model and Software Metrics

Our metamodel allows for a flexible representa-
tion of the composite elements related to quality 
measurement. Every elementary condition can 
refer to a quality metric which is used by this 
condition. The treatment of this metric can vary; 
in our metamodel, we show a simplified repre-
sentation. However, a more complicated fragment 
of the metamodel (such as the metamodel corre-
sponding to the measurement ontology described 

in (Bertoa, Vallecillo, & Garc¡a, 2006)) can be 
integrated instead. A corresponding glossary 
fragment is shown on Table 4, which uses table 
nesting to represent relationships between quality 
characteristics and metrics.

Glossary Representation of Quality 
Requirements

Scope expressions and operation-type specifica-
tions are specified in a requirement scope glossary 
shown in Table 5. This glossary corresponds to 

Table 4. Excerpt from quality model predesign glossary representing WSQM 

Quality model WSQM (E. Kim & Lee, 2005) adaptation for the order processing domain

Quality  
category

Quality  
characteristic Quality metric

id# name id# name id# name definition unit order scale

Q1 Business value

Q2 Service mea-
sure-ment

Q3 Performance Q4 Response time time taken to send a request 
and receive the response

sec mini-
mize

absolute

Q5 Maximum 
throughput

max number of services to 
be processed for a unit time

maxi-
mize

…

Q6 Stability Q7 Availability the ratio of time period in 
which a service is ready

maxi-
mize

ratio

Q8 Accessibility the ratio of acknowledge-
ments to the requests

maxi-
mize

ratio

Table 5. Defining requirement scope expressions in a requirement scope glossary 

id# name classification scope … req. source

QS1 all operations involving orders or 
order items

expression D3, Order parameter S9

OR

D5, Order item parameter

QS2 authorize operation enumeration O7, authorize S10

QS3 order items operation enumeration O3, order items S11

QS4 all operations called by order 
department

expression D6, Order department calling S12

QS5 all order processing service op-
erations

Expression D1, Order processing 
service

executing S14

QS6 all operations performed if the 
order comes in

Condition C1, order comes in S23

QS7 all operations performed if the 
order is rejected

Condition C6, order is rejected S24



185

Relational Service Quality Modeling

the target for the metaassociation between Item-
Condition and ModelingElement metaclasses 
in a metamodel (Figure 4). To represent the 
requirement scope, the glossary contains what 
we call scope expressions. The parameters of 
an elementary scope expression P(T,I) are an 
involved thing-type T and involvement type I 
for the operation-types in question. For example, 
for requirement S14 above (which refers to all 
operations of OPS the order processing service) a 
scope expression will accept T = “Order process-
ing service” and I = “provides for execution” so 
the resulting requirement scope will contain all 
the operation-types provided for execution by 
the OPS. Elementary scope expressions can be 
chained together using logical operators to form 
complex scope expression.

Table 6 shows a fragment of a quality require-
ments glossary related to our example. C4 and 
C5 are imprecise constraints, C3 is a context 
dependency. C1, C2, and C6 represent refined 
requirements. It corresponds to both dynamic 
conditions and calling contexts in a metamodel.

Our metamodel allows us to easily extend the 
quality modeling notation to business process 
quality requirements. It is easy to see that the 
dynamic condition for the quality requirements 
(represented by its scope in glossaries) can refer, 
among others, to cooperation-types as a whole, 
as well as to their pre- and post-conditions. As a 
result, it becomes possible to capture the seman-
tics of quality requirements applied to any point 
in a workflow: both cooperation-types and oper-
ation-types in general.

Quality requirements may influence each 
other (a fact reflected by the Impact metaclass on 
Figure 4). That association can be specified in a 
related glossary (requirement impact glossary). 
For brevity, we omit this glossary here.

PREDESIGN ADVANTAGES 
AND USAGE EXAMPLES

Reasons for choosing the predesign approach to 
model service requirements are the following:

Table 6. Service and business process quality requirements in a quality requirements glossary 

id# quality 
characteristic Scope

Context information
… threshold description req. 

sourcecontext type context

C1 Q4, Response time QS1, all operations in-
volving orders or order 
items

0,5 S9

C2 Q4 QS2 0,3 S10

C3 Q4 QS3, order items op-
eration

T1, connection dialup 2 S11

T2, load <500 users

T1, connection dialup 5 S11

T2, load >500 users

T1, connection non-dialup 0,5 S11

C4 Q7, Availability QS4, all operations called 
by order department

highest pos-
sible

S12

C5 Q7 QS3 second 
highest

S13

C6 Q9, Authentication QS5, all order processing 
service operations

S14

C7 Q7 QS6 99 S23

C8 Q4 QS7 0,3 S24



186

Relational Service Quality Modeling

1.  The approach applies a simple semantic 
model, and a representation that is well-
known to the intended audience: business 
stakeholders. A glossary (tabular representa-
tion) may be used like a check list (Galle et 
al., 2008) which is particularly useful during 
requirements elicitation. Tabular represen-
tations complement elicitation whenever a 
graphical model is not adequate or would 
lead - if used - to numerous topological 
revisions (i.e. elicitation phase).

2.  The approach is user-centered, participative, 
and restricts itself to a small set of modeling 
concepts.

3.  The relational model (minus queries) encod-
ed form of requirements predesign provides 
a definition of key concepts which allows to 
interpret these concepts as well in terms of 
the application domain as well as software 
items. This justifies an easy way of creating 
a first system prototype by simulating the 
application domain concepts as functionality 
chunks.

4.  The definitions above show that application 
domain experts do not have to treat their 
domain in terms of formal or even implemen-
tation concepts. This is important because 
most of them are not educated for this and 
thus would be overstrained. Moreover, they 
would be ruled out from validation in case 
of un-familiar formalisms.

5.  The approach is integrated into a rich set 
of requirements analysis techniques utiliz-
ing natural language processing (Fliedl et 
al., 2002) and interactive simulation of the 
system under development (Kaschek et al., 
2008)

6.  A rich set of mapping techniques allows the 
predesign model to be mapped into other 
semantic models (design-time) such as UML 
or Semantic Web Services languages.

7.  Using the NF2 meta-metamodel allows for 
performing complex relational queries over 

the predesign model. We will discuss this 
below.

Relational and Dimensional 
Queries over Glossaries

We will look in more detail at one particular 
advantage of our relational predesign: that all 
quality information is contained in glossaries, i.e., 
models of similar structure. We think that generic 
queries can be worked out and issued against glos-
sary sets that calculate the impact of any quality 
requirement on required functionality or quality 
characteristics. That would make it possible to 
estimate the effect of any requirements changes 
on selected quality characteristics or functionality.

Assume, for example, that we want to consider 
the effect of any requirements changes to OPS the 
“order processing service”. Then we need to know 
all the requirements that have OPS in their scope 
(see Table 7a). It is not difficult to design a query 
that would do the job. Something like “SELECT 
id# FROM RSG WHERE OPS IN scope” will 
essentially do if RSG is the requirements scope 
glossary in Table 4.

Relational predesign could simplify to make 
tradeoffs between different quality characteristics. 
Suppose that we want, with the given resources, 
at a time to ensure minimal response time and 
maximal availability. By issuing a query for each 
constraint against CIG the constraint impact glos-
sary (not included in this paper) we can identify 
those operation-types that impact the constraint 
positively (towards the optimum) or negatively 

Table 7a. Tradeoff-supporting query 

thing-type involvement
constraint

id#

D1, order 
processing 
service

executing

C1

C3

…

C6



187

Relational Service Quality Modeling

(away from the optimum). This allows us (by 
investigating the scopes of impacting require-
ments) at least to identify those operations the 
implementation of which aids at the same time 
meeting both requirements. We also can identify 
those operations that are counter-productive with 
respect to achieving the two requirements.

Relational predesign also can play a role in 
system maintenance as changed requirements 
could be related to those parts of programs that 
need to be changed. For example assume that we 
plan a system upgrade from using dialup lines to 
more recent communication media. We might 
then have to find the functionality affected by 
the requirements related to “dialup”. The query 
corresponding to this request has to find the set 
of requirements referring to the “dialup” context 
and then identify the operation-types belonging to 
the scopes of these requirements. Resulting glos-
sary can be seen on Table 7b. It is also possible 
to explore the query further using functionality-
related part of the predesign model, e.g. finding all 
services providing these operations for execution 
or all the thing-types calling these services.

Interesting query possibilities can be also 
opened by exploring the obvious similarity be-
tween the metamodel for quality requirements 
(Table 4) and data schemas commonly used in 
dimensional data modeling (Kimball & Ross, 
2002) such as a star or snowflake schema. Using 
the terminology of dimensional modeling, we can 
state that the requirements glossary can be seen 
in a way similar to a fact table while quality 
model glossary and, to less degree, scope and 
context (thing-type) glossaries can be treated 
similarly to dimension tables (quality, functional-
ity and context dimensions, respectively). Exploit-
ing this similarity further, we can state that many 
query and presentation techniques originated in 
dimensional modeling and OLAP communities 
can be exploited this way. For example, if we take 
a look at the Quality dimension we can see that 
its hierarchical organization allows implementing 
the “drill down” operation: for advancing from 
high-level quality characteristic down to lower-
level ones narrowing the sets of requirements 
received along the way – up to pointing to the set 
of characteristics affected to the particular low-
level metric (Figure 5). Aggregate functions like 
count of relevant requirements, their average 
impact, or the smallest established threshold can 
be calculated as well instead of receiving the lists 
of requirements. As an example, consider an 
analyst who would like to see the largest through-
put required for all operations in a system in order 
to make sure that the set of requirements is com-
pliant to the current hardware capabilities. To do 
this, it is possible to drill from “Service Measure-

Table 7b. Maintenance-supporting query 

Context information operation-type

context type context id# name

T1, connection dialup O3 order items

…

Figure 5. Example of drilling down the quality dimension



188

Relational Service Quality Modeling

ment” high-level characteristic down to the 
“maximum throughput” metric and to obtain the 
value of the aggregate function “MAX(threshold)”.

Another dimension of drilling down can be 
the functionality. Here one can proceed from the 
coarser-grained functional artifacts (such as thing-
types representing services) down to fine-grainer 
ones (such as particular service operations).

The “slice and dice” operation can be per-
formed as well. In this operation, the information 
can be presented from several points of view on the 
user’s request. For example, the quality require-
ments in a glossary can be grouped by affected 
functionality (starting from quality scope), quality 
characteristic and context (Table 8).

Similarities between Business 
Processes and Data-Centric 
Information Systems

Our approach allows us to highlight and try to ex-
ploit the analogon between our notion of business 
process (as PAIS backed by BP engine enacting 
NF2 definitions of business processes) and data 
centric information systems that are facilitated by 
DBMS “enacting” table definitions in relational 
databases. We think this is a very new viewpoint 
that helps better understand BP quality.

RELATED WORK

Modeling Service Quality 
Requirements

Song (2007) discusses three challenges related 
to developing quality requirements for service-
oriented applications: flexibility of service deploy-
ment, sharing services among stakeholders, and a 
more complex cost structure. (Wada et al., 2006) 
provides UML stereotypes for conceptualizing 
service, message exchange, message, connector 
and filter for modeling non-functional service 
attributes in a service-oriented application. The 
key elements of that approach, as listed above, 
correspond to the low-level (technical) aspects 
of service implementation, which are not well 
suited for end-user verification. That model was 
enhanced in (Wada, Suzuki, & Oba, 2007) with 
a feature modeling technique from (Czarnecki & 
Eisenecker, 2000) to represent the requirements. 
That technique allows a detailed treatment of 
interdependencies among quality characteristics 
that are treated as features of the service under de-
velopment. Another metamodel for non-functional 
properties of services with their classification 
based on scales of measurement was proposed 
in (Hündling, 2005).

Table 8. Requirements grouped by quality scope, quality characteristic and context 

quality 
scope constraint quality 

characteristic constraint context information constraint

id# ... id# ... context type context id# ...

QS1 C1

Q4, Response time

C1
T1, connection

dialup C3

QS2 C2 C2 non-dialup C3

QS3
C3 C3 T2, load <500 users C3

C5
Q7, Availability

C4 …

QS4 C4 C5
default

C5

QS5 C6 Q9, Authentication C6 C6



189

Relational Service Quality Modeling

(Jingbai et al., 2008) provides an approach to 
modeling quality service requirements. A domain 
process model (DPM) is introduced that includes 
dynamic system behavior aspects with notions 
similar to operation-types and cooperation-types. 
Integration of quality-related information into 
DPM is explained. That paper deals with the non-
functional context of the service invocation on the 
metamodel level. That has actually influenced our 
solution. The differences between our approaches 
are, however, quite significant. In particular, we 
have worked out the business process model much 
further. Also their approach does not include inter-
dependencies between quality requirements and 
tasks. The invocation context, though similar in 
meaning, is simpler in structure and allows only 
textual representation.

Modeling Business Process 
Quality Requirements

Quality requirements to business processes are 
similar in organization to the traditional qual-
ity requirements. Among the modeling efforts 
(Pavlovsky & Zou, 2008) introduced the notion 
and graphical representation of so called qual-
ity constraint condition which can be applied to 
different steps of the process. Several papers use 
aspect-oriented techniques for expressing quality 
requirements and quality attributes of business 
processes. In (Wada et al., 2006) and (Wada et 
al., 2007) a method is specified for modeling 
non-functional business processes characteristics. 
(Wada, Suzuki, & Oba, 2008) uses the language 
of aspect-orientation for discussing crosscutting 
relationships. That approach, however, is not well 
suited for expressing relationships between quality 
and such process functionality that can be veri-
fied by business stakeholders. An aspect-oriented 
approach to introduce QoS into BPEL utilizing 
WS-Policy (“Web Services Policy Framework,” 
2006) for QoS policy description is (Charfi, 
Khalaf, & Mukhi, 2007).

(Aburub et al., 2007) is devoted to establish-
ing an approach to represent quality requirements 
to business processes; in particular, it proposes 
the corresponding quality model. The problems 
with this paper are connected with the fact that it 
equates without further discussion the quality of 
the process they have studied with the quality of 
the data that process obtains. This may be in line 
with the requirements of the related project. We 
think that was not really clear from that paper. 
For example, it is obviously an important process 
quality aspect beyond the data quality how much 
running one process instance costs and how long it 
takes to do so. These quality characteristics were 
ignored in the paper.

Service Quality for the Semantic 
Web Services Framework

Predesign modeling of service requirements is 
closely related to the Semantic Web Services 
approach. (Cappiello, Pernici, & Plebani, 2005) 
introduce a general semantic model that features 
the quality dimension (actually a metamodel for 
some quality model) and provide an integration 
with service representation describing the QoS. 
Possible ways of representing this model using 
OWL are discussed too. Another approach aimed 
at creating a QoS ontology suitable for integra-
tion in any web services description ontology is 
presented in (Tondello & Siqueira, 2008), this 
ontology is called QoS-MO.

A comprehensive comparison of OWL-S and 
WSMO is done in (Lara et al., 2005). It considers, 
among others, the possibility to incorporate QoS-
related information into the related ontologies. 
Some specific approaches to achieve this goal 
are known. In particular, an approach to enhance 
WSMO with QoS ontology is introduced in (Toma, 
Foxvog, & Jaeger, 2006; Wang, Vitvar, Kerrigan, & 
Toma, 2006). A techniques for enhancing OWL-S 
with information based on UML Profile for QoS 
is discussed in (Celik & Elci, 2008; Kritikos & 
Plexousakis, 2007; Schröpfer, Schönherr, Offer-



190

Relational Service Quality Modeling

mann, & Ahrens, 2007). Defining quality-related 
characteristics through policies on the level of 
BPEL-defined processes is described in Baresi, 
Guinea, and Plebani (2007).

The predesign approach and Semantic Web 
Services are, in our view, complementary and 
can be integrated. That requires: (1) representing 
service ontologies using the predesign model in a 
way similar to domain ontologies (Kop, Mayr, & 
Zavinska, 2004); (2) Integrating quality-related 
information into these ontologies; and (3) map-
ping semantic service information into a specific 
service description language.

CONCLUSION

In this chapter, we have proposed an extension of 
the predesign model initially defined in Kop and 
Mayr (2002), Mayr and Kop (1998), and Shek-
hovtsov et al. (2008). By strictly employing NF2-
tables we progressed to Relational Predesign. That 
extension is for modeling quality requirements for 
services and business processes. We showed that 
it flexibly integrates specific or standard quality 
models for both services and business processes, 
separates functional and quality-related concerns 
and flexibly describes the requirements semantics 
through relationships between these concerns.

Predesign can contribute to improved require-
ments quality because it is integrated, as technol-
ogy exists for mapping predesign models onto 
UML and other conceptual languages. It is open, 
as new elicitation techniques can be easily inte-
grated into the predesign. It is participative, since 
our targeted audience easily can comprehend and 
manage its models. Predesign employs only few 
modeling concepts and thus is easy to learn. It is 
sound, as technology exists for analyzing prede-
sign models. We consider predesign as stakeholder 
centered, because it empowers stakeholders to 
drive the requirements process.

REFERENCES

Abramowicz, W., Zyskowski, D., Suryn, W., & 
Hofman, R. (2007). SQuaRE based Web ser-
vices quality model. In [IAENG.]. Proceedings 
of IMECS, 08, 827–835.

Aburub, F., Odeh, M., & Beeson, I. (2007). 
Modelling non-functional requirements of 
business processes. Information and Software 
Technology, 49(11), 1162–1171. doi:10.1016/j.
infsof.2006.12.002

Al-Masri, E., & Mahmoud, Q. H. (2008). Toward 
quality-driven Web service discovery. IT Profes-
sional, 10(3), 24–28. doi:10.1109/MITP.2008.59

Andreozzi, S., Montesi, D., & Moretti, R. (2003). 
Web services quality. In [IEEE Press.]. Proceed-
ings of CCCT, 03, 252–257.

Baresi, L., Guinea, S., & Plebani, P. (2007). 
Policies and aspects for the supervision of BPEL 
processes. In Proceedings of CAiSE’07, (LNCS 
4495), (pp. 340-354). Springer.

Bertoa, M., Vallecillo, A., & Garcia, F. (2006). An 
ontology for software measurement. In Calero, 
C., Ruiz, F., & Piattini, M. (Eds.), Ontologies for 
software engineering and software technology 
(pp. 175–196). Springer. doi:10.1007/3-540-
34518-3_6

Cappiello, C., Pernici, B., & Plebani, P. (2005). 
Quality-agnostic or quality-aware semantic 
service descriptions? In Proceedings of W3C 
Workshop on Semantic Web Service Framework.

Celik, D., & Elci, A. (2008). Semantic QoS model 
for extended IOPE matching and composition of 
Web services. In [IEEE CS Press.]. Proceedings 
of COMPSAC, 08, 993–998.

Chaari, S., Badr, Y., Biennier, F., BenAmar, C., 
& Favrel, J. (2008). Framework for Web service 
selection based on non-functional properties. 
International Journal of Web Services Practices, 
3(1-2), 94–109.



191

Relational Service Quality Modeling

Charfi, A., Khalaf, R., & Mukhi, N. (2007). 
QoS-aware Web service compositions using 
non-intrusive policy attachment to BPEL. In 
Proceedings of ICSOC’07, (LNCS 4749), (pp. 
582-593). Springer.

Codd, E. F. (1979). Extending the database re-
lational model to capture more meaning. ACM 
Transactions on Database Systems, 4(4), 397–434. 
doi:10.1145/320107.320109

Czarnecki, K., & Eisenecker, U. (2000). Genera-
tive programming: Methods, tools and applica-
tions. Addison-Wesley.

Dobson, G. (2004). Quality of Service in Service-
Oriented Architectures. Dependability Infrastruc-
ture for Grid Services Project.

Dobson, G., & Sanchez-Macian, A. (2006). To-
wards unified QoS/SLA ontologies. In [IEEE CS 
Press.]. Proceedings of SCW, 06, 169–174.

Dumas, M., Van der Aalst, W., & ter Hofstede, 
A. (2005). Process-aware Information Systems. 
Wiley-IEEE. doi:10.1002/0471741442

Evans, J., & Filsfils, C. (2007). Deploying IP and 
MPLS QoS for multiservice networks: Theory and 
practice. Morgan Kaufmann.

Fliedl, G., Kop, C., Mayerthaler, W., Mayr, H. 
C., & Winkler, C. (2002). The NIBA approach 
to quantity settings and conceptual predesign. In 
Proceedings of NLDB’01.

Galle, D., Kop, C., & Mayr, H. C. (2008). A uni-
form Web service description representation for 
different readers. In [IEEE CS Press.]. Proceedings 
of ICDS, 08, 123–128.

Galster, M., & Bucherer, E. (2008). A taxonomy 
for identifying and specifying non-functional 
requirements in service-oriented development. In 
Proceedings of 2008 IEEE Congress on Services 
- Part I, (pp. 345-352). IEEE CS Press.

Guceglioglu, A. S., & Demirors, O. (2005). Using 
software quality characteristics to measure busi-
ness process quality. In Proceedings of BPM’05, 
(LNCS 3649), (pp. 374-379). Springer.

Heitmeyer, C. L. (2007). Formal methods for 
specifying, validating, and verifying require-
ments. Journal of Universal Computer Science, 
13(5), 607–618.

Hündling, J. (2005). Modelling properties of 
services. In Proceedings of 1st European Young 
Researchers Workshop on Service Oriented 
Computing.

Janicki, R., Parnas, D. L., & Zucker, J. (1997). 
Tabular representations in relational documents. 
In Brink, C., Kahl, W., & Schmidt, G. (Eds.), 
Relational methods in computer science. Berlin: 
Springer.

Jingbai, T., Keqing, H., Chong, W., & Wei, L. 
(2008). A context awareness non-functional re-
quirements metamodel based on domain ontology. 
In Proceedings of IEEE International Workshop 
on Semantic Computing and Systems, (pp. 1-7). 
IEEE CS Press.

Jureta, I.J., Herssens, C. & Faulkner, S. (2008). A 
comprehensive quality model for service-oriented 
systems. Software Quality Journal.

Kaschek, R., Kop, C., Shekhovtsov, V. A., & 
Mayr, H. C. (2008). Towards simulation-based 
quality requirements elicitation: A position paper. 
In Proceedings of REFSQ 2008, (LNCS 5025), 
(pp. 135-140). Springer.

Kassab, M., Ormandijeva, O., & Daneva, M. 
(2008). A traceability metamodel for change 
management of non-functional requirements. 
In Proceedings of International Conference on 
Software Engineering Research, Management, 
and Applications, (pp. 245-254). IEEE CS Press.

Kim, E., & Lee, Y. (2005). Quality model for Web 
services 2.0. OASIS.



192

Relational Service Quality Modeling

Kim, H. M., Sengupta, A., & Evermann, J. 
(2007). MOQ: Web services ontologies for QoS 
and general quality evaluations. International 
Journal of Metadata. Semantics and Ontologies, 
2(3), 195–200. doi:10.1504/IJMSO.2007.017612

Kimball, R., & Ross, M. (2002). The data ware-
house toolkit: The complete guide to dimensional 
modeling (2nd ed.). Wiley.

Kop, C., & Mayr, H. C. (2002). Mapping functional 
requirements: From natural language to conceptual 
schemata. In. Proceedings of SEA, 02, 82–87.

Kop, C., Mayr, H. C., & Zavinska, T. (2004). Us-
ing KCPM for defining and integrating domain 
ontologies. In Proceedings of Web Information 
Systems - WISE 2004 Workshops, (LNCS 3307), 
(pp. 190-200). Springer.

Kritikos, K., & Plexousakis, D. (2007). OWL-Q 
for semantic QoS-based Web service description 
and discovery. In Proceedings of SMRR’07.

Lara, R., Polleres, A., Lausen, H., Roman, B., 
de Bruijn, J. & Fensel, D. (2005). A conceptual 
comparison between WSMO and OWL-S. (WSMO 
Deliverable 4.1).

Lee, Y., Bae, J., & Shin, S. (2005). Development 
of quality evaluation metrics for BPM (Busi-
ness Process Management) system. In [IEEE CS 
Press.]. Proceedings of ICIS, 05, 424–429.

Lee, Y., & Yeom, G. (2007). A research for Web 
service quality presentation methodology for SOA 
framework. In [IEEE CS Press.]. Proceedings of 
ALPIT, 07, 434–439.

Liu, Y., Ngu, A. H. H., & Zeng, L. (2004). QoS 
computation and policing in dynamic Web ser-
vice selection. In [ACM Press.]. Proceedings of 
WWW, 04, 66–73.

Mayr, H. C. (2006). Conceptual requirements 
modeling–a contribution to XNP (eXtreme Non 
Programming). In Proceedings of APCCM’06, 
(CRPIT, Vol. 53). Australian Computer Society.

Mayr, H. C., & Kop, C. (1998). Conceptual 
predesign-bridging the gap between requirements 
and conceptual design. In [IEEE CS Press.]. Pro-
ceedings of ICRE, 98, 90–100.

Mayr, H. C., Kop, C., & Esberger, D. (2007). 
Business process modeling and requirements 
modeling. In Proceedings of ICDS’07, (p. 8). 
IEEE CS Press.

O’Sullivan, J., Edmond, D., & ter Hofstede, A. 
(2002). What’s in a service? Towards accurate 
description of non-functional service properties. 
Distributed and Parallel Databases, 12, 117–133. 
doi:10.1023/A:1016547000822

Pastor, O. (2006). From extreme programming 
to extreme non-programming: Is it the right 
time for model transformation technologies? In 
Proceedings of DEXA’06, (LNCS 4080), (pp. 
64-72). Springer.

Pavlovsky, C. J., & Zou, J. (2008). Non-functional 
requirements in business process modeling. In 
Proceedings of APCCM’08 - Vol 79, (pp. 103-
112). Australian Computer Society.

Ran, S. (2003). A model for Web services discovery 
with QoS. ACM SIGecom Exchanges, 4(1), 1–10. 
doi:10.1145/844357.844360

Schek, H., & Pistor, P. (1982). Data structures for 
an integrated database management and informa-
tion retrieval system. In. Proceedings of VLDB, 
82, 197–207.

Schröpfer, C., Schönherr, M., Offermann, P., & 
Ahrens, M. (2007). A flexible approach to service 
management-related service description in SOAs. 
In Emerging Web Services Technology, Part II. 
(pp. 47-64). Basel: Birkhäuser.

Shekhovtsov, V. A., Kop, C., & Mayr, H. C. (2008). 
Capturing the semantics of quality requirements 
into an intermediate predesign model. In Proceed-
ings of SIGSAND-EUROPE’2008 Symposium, 
(pp. 25-37). GI.



193

Relational Service Quality Modeling

Song, X. (2007). Developing non-functional 
requirements for a service-oriented software 
platform. In [IEEE CS Press.]. Proceedings of 
COMPSAC, 07, 495–496.

Toma, I., Foxvog, D., & Jaeger, M. C. (2006). 
Modeling QoS characteristics in WSMO. In 
Proceedings of MW4SOC’06 (pp. 42–47). ACM 
Press. doi:10.1145/1169091.1169098

Tondello, G. F., & Siqueira, F. (2008). The QoS-
MO ontology for semantic QoS modeling. In 
Proceedings of 2008 ACM Symposium on Applied 
Computing, (pp. 2336-2340). ACM Press.

Vanderfeesten, I., Cardoso, J., Mendling, J., 
Reijers, H. A., & van der Aalst, W. (2007). Qual-
ity metrics for business process models. In 2007 
BPM and Workflow Handbook, (pp. 179-190). 
Future Strategies Inc.

Wada, H., Suzuki, J., & Oba, K. (2006). Model-
ing non-functional aspects in Service Oriented 
Architecture. In Proceedings of SCC’06, (pp. 
222-229). IEEE CS Press.

Wada, H., Suzuki, J., & Oba, K. (2007). A feature 
modeling support for non-functional constraints 
in Service Oriented Architecture. In Proceedings 
of SCC’07, (pp. 187-195). IEEE CS Press.

Wada, H., Suzuki, J., & Oba, K. (2008). Early 
aspects for non-functional properties in service 
oriented business processes. In Proceedings of 
2008 IEEE Congress on Services - Part I, (pp. 
231-238). IEEE CS Press.

Wang, X., Vitvar, T., Kerrigan, M., & Toma, I. 
(2006). A QoS-aware selection model for Seman-
tic Web services. In Proceedings of ICSOC’06, 
(LNCS 4294), (pp. 390-401). Springer.

Web Services Policy Framework. (2006). Policy 
outline. Retrieved from http://www.w3.org/Sub-
mission/WS-Policy/

Zeng, L., Benatallah, B., Ngu, A. H. H., Dumas, 
M., Kalagnanam, J., & Chang, H. (2004). QoS-
aware middleware for Web services composition. 
IEEE Transactions on Software Engineering, 
30(5), 311–327. doi:10.1109/TSE.2004.11

Zhou, J., Niemelä, E., & Savolainen, P. (2007). 
An integrated QoS-aware service development 
and management framework. In Proceedings of 
WICSA’07. IEEE CS Press.

View publication statsView publication stats

https://www.researchgate.net/publication/288117888

