
Kaschek/Delcambre (Eds.): The Evolution of Conceptual Modeling, LNCS 6520, pp. 21–41, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Templates in Domain Modeling – A Survey

Christian Kop and Heinrich C. Mayr

Alpen-Adria-Universität Klagenfurt,
Department of Applied Informatics / Application Engineering

Austria
{chris,mayr}@ifit.uni-klu.ac.at

Abstract. Conceptual modeling is often strongly related to a graphical
language. Since the 80s, template-based approaches have also been proposed.
However, they seldom reached the same popularity as graphical approaches.
Nevertheless, template-based approaches are also important for collecting and
representing information. This chapter will give a survey of approaches that
used and use templates. It will be shown, how these templates are used and why
their role is important.

Keywords: template-based approaches, conceptual modeling, predesign.

1 Introduction

Conceptual modeling is often strongly related to using a graphical language. The
Unified Modeling Language (e.g., UML) and other languages like ER, ORM, Data
Flows, etc. are good examples of this relationship. Many parts of UML are diagrams
for specific purposes during software engineering (e.g., class diagrams, activity
diagrams, use cases, state charts, object interaction diagrams). Class diagrams help to
model the data structure of information systems. Use cases model the functionality the
information system must provide to its users. Finally activity diagrams, state charts
and object interaction diagrams help to model behavior (i.e., behavior of the system,
components or single objects). Class Diagrams, use case and activity diagrams are
used in the late stage of requirements engineering (domain modeling). Class
diagrams, state charts, object interaction diagrams are typically used during the design
phase in software engineering.

Although graphical languages like UML are very popular, they only show parts of
information needed to develop a system. For more information, template-based
approaches have been also proposed. However, they were mostly seen as an “add on”
to graphical approaches.

This chapter will give a survey of approaches that used templates which are not
based on a graphical (diagrammatic) representation. It will show how these templates
are used and why their role is important.

In order to do this, the chapter will be structured as follows. Section 2 gives an
introduction into the several categories of templates. Notions are be defined and a
categorization is made. Section 3 firstly provides some thoughts why graphical
approaches are so popular, but afterwards it also discusses why template-based

22 C. Kop and H.C. Mayr

approaches are important and thus should not be ignored. Section 4 gives a survey on
existing template-based approaches. The next section provides the description and
historical summary of a special approach which was developed by the authors
(Section 5). Section 6 concludes with a visionary idea and scenario of how template-
based approaches can be integrated into the whole software development cycle in the
future. The chapter is summarized in Section 7.

2 Types of Templates

Before starting with the description and history of template-based approaches, it is
necessary to define what is meant here by the term template.

A template here is any kind of textual information which follows a structure. This
means, it is possible to know the meaning of some information according to its
position within the structure. Templates can be further divided by their purpose and
usage into forms and controlled language sentences pattern.

A form is a template that has predefined information and empty slots for each of
the predefined information. These empty slots have to be filled out. The process of
filling the empty slots is supported by the predefined information. In other words
according to the predefined information to which an empty slot belongs, the reader of
the form can conclude about the “semantic” of the slot’s content and knows what to
do with it (i.e., what kind of information must be entered and/or checked).

A form can be further refined to attribute-value-pair lists, tables, matrices,
cubes, n-dimensional tables and glossaries. If the form is provided in a tabular
format with two columns (attribute, value) and in each row the attribute column is
filled with predefined information and the value column can be filled out, then it is an
attribute-value-pair list.

If the form information is repeated several times and the predefined slots can be
extracted and used as column header information because they remain invariant in
this repetition then the term table will be used.

If a second dimension is added to the table, then it is called a matrix. Further
dimensions can be added. Then this becomes a cube (3 dimensions) or a
multidimensional table, in general (n-dimensions). In this case the header information
is only invariant with respect to a certain dimension.

Cubes and Multidimensional Tables are only mentioned for the sake of
completeness and they will not be mentioned further. They are not commonly used as
a mean for communication in Requirements and Software Engineering since two
dimensions can be easily described and visualized on a sheet of paper or in standard
software products (e.g., Word, PowerPoint, Excel etc.).

The term glossary is commonly defined as follows. A glossary is a list of terms
together with their definition. From the point of view of a representation, a glossary
consists at least of two columns, the column with the term and the column with the
definition of terms. Hence a glossary is a table. Beyond this, a glossary has a primary
column which contains the terms which must be described. The rows in the other
columns support the description of these elements.

 Templates in Domain Modeling – A Survey 23

A controlled natural language sentence pattern is a template in which all
information is given, but the semantic of a certain kind of information can be derived
from its position within the structure (i.e., the grammar). Each sentence follows this
very restrictive grammar. Controlled languages are:

“Subsets of natural languages whose grammars and dictionaries have been
restricted in order to reduce or eliminate both ambiguity and complexity”1

Although the grammar in a controlled language is restrictive, they have a main
benefit. The information expressed as a sentence is unambiguous. Furthermore,
according to the syntactical structure of a sentence a writer of a controlled language
sentence knows which correct combination of word categories he must use in order to
get a well formed sentence. For instance, if the pattern is followed that a well formed
sentence should have the form subject, predicate object he will certainly not forget
the subject or object. Furthermore if he knows that a verb needs an agent
(someone/something that initiates execution of a process) he will not forget and the
model becomes much more complete.

Furthermore, templates can be divided according to their level of abstraction into

• templates representing the schema level and
• templates representing the instance level.

2.1 Templates for the Schema (Model) Level

In a form that describes the schema, the predefined information belongs to the meta-
model. Each of the empty slots belongs to a certain schema (model) element. Figure 1
shows some examples for a general form and an attribute value pair list.

precondition

main flow

exceptional flow

precondition

main flow

exceptional flow

postcondition

postcondition

precondition

main flow

exceptional flow

precondition

main flow

exceptional flow

postcondition

postcondition

Fig. 1. Example for a form and an attribute-value pair list

1 See: http://sites.google.com/site/controllednaturallanguage/ (last access: Sept., 27 2010)

24 C. Kop and H.C. Mayr

A controlled natural language sentence might be “The customer orders many
products”. Based on the grammar conclusions can be made about certain words in the
context of modeling (e.g., nouns become classes or attributes, verbs become
relationships, verbs with an agent become candidates for actions in scenario steps etc.).

2.2 Templates for the Instance Level

Templates can also be used on an instance level. Instead of specifying the meta-model
in the predefined information and the schema in the empty slots, the predefined
information is on the schema level and the empty slots must contain the instances of
this schema. The previously mentioned notions form, table, matrix and glossary can
be found here as well. Typical examples for forms, tables and matrixes are user
interfaces, Excel-Sheets, forms for invoices, tabular reports etc.

They are also useful for design since the predefined information is useful for the
construction of the schema. The information which has to be entered into the empty
slots must be managed by the schema and therefore is useful for concrete test cases.

First name

Last name

Phone

e-Mail

Address

Fax

First name

Last name

Phone

e-Mail

Address

Fax

Fig. 2. Example of a form at the instance level

Controlled language pattern can also provide information on the instance level. In
this case, instead of common nouns, word categories like proper nouns and numbers
are used in combination with common individual nouns. These proper nouns and
numbers represent the instance level.

3 Graphical Modeling Languages vs. Template-Based Approaches

Before talking about template-based approaches, graphical approaches will be
discussed.

 Templates in Domain Modeling – A Survey 25

3.1 An Advocacy for Graphical Modeling Languages?

There are a number of reasons why graphical approaches are so popular:

• Humans are visual beings. They perceive and explore the world through their
eyes. Other senses - like the sense to hear, taste, feel, and smell something - are
often used secondarily.

• Pictures, graphical symbols (e.g., cave paintings), statues and totem-poles were
the first models of mankind.

• Pictures and graphical representations can provide us a spatial overview and an
overall description of a physical thing, a phenomenon or a problem. This is why it
is often said that a “picture is worth a thousand words”. Due to the good visual
comprehension of human, they can better “read” a fact from an overall picture
than from a sequence of letters (e.g., the Latin alphabet).

• Pictures and graphical representations (if it does not belong to graphical art) is
often made exactly just for the purpose to offer a summary (e.g., bar charts in
business domains).

• A conceptual model in informatics is often compared with a blue print for the
construction of a material object (e.g., house, car, bridge etc.). To be trained to
think in that way during the education also has an influence on the skills to read
and interpret certain model representations.

• Finally, it is often argued that according to the above mentioned advantages, these
graphical representations are a good basis for later steps. Even model to model
transformation is possible. The class diagrams strongly used in model driven
architecture (MDA) are representatives for that argument.

3.2 Limitations of Graphical Modeling Languages

According to the above subsection, a graphical representation for a modeling system
offers advantages. However, a more detailed look to graphical representation
techniques also shows that they are not optimal in every situation and for every
reader.

In order to read or interpret the graphical description, it is necessary that the
“reader” understands the semantics of notions. If a person does not understand an
underlying notion (e.g., the general idea of a class, an attribute or association) then a
graphical representation (e.g., a UML class diagram) is useless for a reader who does
not have the necessary skills. If the “reader” does not know that * means “many” in a
detailed description of an association, he will not understand in which way the
concepts are related to each other. The same happens if we see today a cave painting
which was created ten thousand years ago. Although we see different kinds of painted
animals we do not understand anymore what the meaning of the complete picture
was. We can only make vague assumptions or guesses.

Even if the modeling concepts of the graphical representation are semantically
understandable, there is still a question concerning the number of concepts visible in
the graphic or picture. If there are only a dozen, then the human being of course can

26 C. Kop and H.C. Mayr

realize and interpret all of them at once. However, if there are many (e.g., hundreds)
of them, the reader will get lost and the graphical representation looses its ability to be
an overview which can be interpreted immediately. Imagine, for example, a class
diagram with 100 classes or a Use Case diagram with 100 use cases and actors related
to these use cases. In such cases, human beings must introduce abstraction
mechanisms (clustering of classes, use cases) to structure the picture.

The different kinds of notions represented in a graphical design are the second
problem. If there are too many, the reader may get confused. Imagine for example a
class diagram that shows everything: classes, attributes, associations, visibilities, data
types of attributes, multiplicities, roles, stereotypes of classes and associations,
comments on all modeling concepts and much more. Such a class diagram will also
likely become unreadable since the reader will not know on which concepts he has to
focus. He will be overwhelmed with too much information which he cannot interpret
at once. Conceptual modeling tools therefore often offer features to hide information
(e.g., to hide attributes, roles, visibilities etc.).

Beside the skills of the reader, often the intended purpose of usage has a great
influence on the type of model that is used. If the overview character that is provided
very well by a picture or graphic is of less importance, then the graphical
representation may have less importance. Imagine for example a situation where a
questionnaire or pattern is needed. Typically the structure of a questionnaire (i.e., pre
defined questions) gives hints to the person who uses the questionnaire regarding
which questions are important. Although many software engineers like to see
themselves as architects of new systems, if they work in the field of requirements
engineering, this “self description” is only conditionally valid. During the early phase
of software engineering the relationship between a software (requirements) engineer
and another stakeholder (e.g., end user) is like the relationship between a medical
doctor and his patient. It is the responsibility of the doctor to extract the causes and
later on find solutions for the causes. From the end user he will only get symptoms.
Without questionnaires and patterns (at least in mind) he will not be able to find the
causes. If requirements engineering experts do not use these questionnaires and
patterns explicitly then this does not mean that they are never used since these experts
already have internalized the questionnaires and can use them very flexibly, based on
the state of communication with the end user.

The final argument for graphical approaches (i.e., that they provide a good basis
for subsequent steps) is not always true. Consider for instance a use case diagram.
The core of the diagram consists of use cases, actors, relationships between use cases,
and relationships between use cases and actors. With these information alone
transformation to a subsequent step is not possible. It is a template-based approach –
the uses case description – that allows a transformation (at least manually). Only with
information about preconditions, exceptional flows, main flow and other parts of the
use case description, the designer gets an imagination of the details and hence an
understanding about the behavior of the future software system. In general a graphical
representation is not responsible for the success of a model transformation. The
underlying modeling notions of the source and target model are responsible for the
success of a transformation. If a match between the notions of the source and target
model is possible, then also a transformation is possible.

 Templates in Domain Modeling – A Survey 27

3.3 Why Template-Based Approaches?

According to Section 3.1 it seems that template-based approaches cannot compete
with graphical approaches and graphical representation are better for human beings.
According to Section 3.2 graphical approaches have limitations. Hence, template-
based approaches and graphical approaches can complement each other and there is
no reason why graphical approaches alone should dominate. The next figure shows
that a template in the form of a glossary can be used as a questionnaire. The columns
represent hints for questions which must be asked if a cell of a column and row is
empty.

hospital201

Social Security
No. of a patient

SSN123

ICD10120

Quantity
description

Value-
Constraint

SynonymsExamplesDescriptionNameID

hospital201

Social Security
No. of a patient

SSN123

ICD10120

Quantity
description

Value-
Constraint

SynonymsExamplesDescriptionNameID

How many examples can exist
(minimum, maximum, average)?

Can you define/describe „ICD10“? Can you give me some examples
for this notion?

Do we have to consider synonyms
for this notion – which ones?

? ? ???

Can you define/describe „ICD10“? Can you give me some examples
for this notion?

Do we have to consider synonyms
for this notion – which ones?

?? ?? ??????

Is there any restriction on
the values of the examples?

Fig. 3. A KCPM Glossary as a questionnaire

If these and other information would appear in a class diagram, then it would be
confusing. Therefore, a glossary can complement a diagram in such a way that it
provides the involved stakeholders with information that might be necessary for
software development. Use cases are another example for such a symbiosis. The use
case diagram is a nice picture to describe a certain aspect of the future software,
however the most essential information are hidden in the use case descriptions. Thus
the relationship between some graphical approaches and template approaches can be
seen as an “iceberg”. Only a small percentage of the information appears graphically.
The rest, which is represented by templates, is hidden under the “water”.

3.4 Template-Based versus Diagrams – Comparison Studies

In the previous subsections pros and cons for diagram-based and template-based
modeling languages were mentioned. In this subsection some studies found in
literature are presented. These results are only exemplary for specific kinds of
templates.

28 C. Kop and H.C. Mayr

The visible (graphically
represented) information,
e.g., use cases, actors,
classes, associations.
attributes …

The hidden (not graphically
represented) information,
e.g., use case descriptions, visibilities
of attributes, comments on classes …

The visible (graphically
represented) information,
e.g., use cases, actors,
classes, associations.
attributes …

The hidden (not graphically
represented) information,
e.g., use case descriptions, visibilities
of attributes, comments on classes …

Fig. 4. Iceberg of schema information

A study [44] was presented which compared textual use cases (TUC) and sequence
diagrams (SSD) in the domain of safety system analysis. Textual use cases were
tables with the following columns: user actions, system response, threats and
mitigation. In each row of the table a piece of text described the user action, a
possible system response as well as the threats and mitigations. For the system’s
sequence diagram (SSD) the UML notation was used. The textual use case (TUC)
was used for interaction between the system and the user. The SSD was used for the
interaction between the system and the user and also for internal system
communication. The main feature of safety systems is to guarantee safety and avoid
failures. During analysis of such systems it is necessary to detect risky situations
(failures which might occur). For the comparison of the two presentation techniques,
two groups of people (one in Norway, the other in France) were asked to find failures.
Statistical methods (t-test, proportional test) were used for answering the following
research questions: Is a Textual Use Case (TUC), in general, better than SSD for
identifying failure modes? If it is better, are there problem areas where SSD is better?
If TUC is better, are there specific failure modes where SSD is better?

According to the tests, the following were found: TUC is better to identify failure
modes related to functionality of the system and the operator. However, for failure
modes which occur within the system, SSD is better.

Another study [9] focused on the comparison of tabular representation and bar
charts in order to represent production statistics or income statistics. In this
experiment people with two different educations (business and engineering) were
asked to answer questions concerning income or production based on tabular and
graphical representations (bar charts). The time which was needed to get the answer
and the number of correct and incorrect answers were measured. The following
results were found. There is no difference between two educations concerning the

 Templates in Domain Modeling – A Survey 29

time which is needed to get the answer. If the questions become more complex, the
time grows to answer it. Independent of their education however, all persons working
with tables could answer the question much faster. Concerning the right answers
however, there was an educational difference. People with an engineering background
were much better using the graphical representation. On the other hand, people with a
business background were better at using the tabular representation.

Another study [4] came to the conclusion that graphical approaches are better for
displaying instructions. A flow of instructions was presented in five formats:
flowchart, logical tree, yes/no tree, decision table and list. Furthermore a control panel
in a current state was presented. In total, the control panel was able to have eight
states. The subjects who did the experiment had to find out the instruction path which
leads to a certain state. This was done by pressing one of the eight button (each button
represented a state) in each of the formats. According to the representation, the
buttons were located at the end of a path (flow chart) beneath a leaf (decision tree) or
in a row (in the decision tables). The number of correctly pressed buttons was
measured. The results showed that subjects who worked with decision trees make
much more errors. Furthermore, it took longer to find the solutions if decision tables
and lists are used instead of the three other graphical representations (flow chart,
logical tree, yes/no tree). However it also turned out that subjects who worked with a
certain kind of format also preferred this format after switching to another format.
The only exceptions were subjects who used lists.

To summarize, the pros and cons of these different representations are still debated.
The same study [9] which focused on graphs and tables for statistical information,
listed in their related work many other results which reported the superiority of
graphic representation and studies which reported the reverse.

4 A Historical Survey of Important Template-Based Approaches

The main stream of techniques belongs to graphical methodologies. In the 70s and
80s methods like SADT, dataflow diagrams, entity relationship diagrams were used to
model different aspects of a software system. The latest representative, UML covers
static (class diagrams) as well as dynamic aspects (sequence diagrams, state charts,
activity diagrams and use cases) of a system using graphical models.

4.1 Forms, Tables, Matrices, Glossaries

Apart from graphical representations, template-based approaches were also used since
the 70. Parnas [39] used tabular representations for the description of software
functions. The rows and columns represented value ranges of two possible input
parameters x and y. The cells described the result depending on the value range
combinations of the two input parameters.

In the 80s, the DATA ID approach [7] used glossaries as a central concept in their
methodology. The generation of glossaries was embedded in an engineering process.
Firstly the universe of discourse was divided into organizational units. A
characteristic of an organizational unit is the homogenous usage of terms (i.e., no
homonyms or synonyms exist in an organizational unit). Secondly users and their
tasks which must be provided by the information system were identified. A matrix

30 C. Kop and H.C. Mayr

was generated which showed which user can tell information about which tasks. This
matrix was the basis for interviews. The designers asked each user details about his
tasks. The results of the interviews were written down as requirements statements.
These requirements statements were categorized into data, operation and event
statements. Finally the information in each statement was more refined and collected
into entries of data, event and operation glossaries. The glossaries were the basis for
traditional conceptual schemas (ER diagrams and Petri nets).

KCPM adopted these glossaries as a modeling methodology. A detailed survey of
KCPM is given in Section 5.

In the 80s and in the 90s, object-oriented analysis and design were the buzz words
of software engineering. Graphical languages like the Object Modeling Technique
(OMT), Booch’s method, Jacobson’s Object Oriented Software Engineering (OOSE)
became very popular. In the mid nineties, the previously mentioned languages were
merged to form UML (Unified modeling language). UML once again was a graph-
based modeling language (with some exceptions e.g., OCL). Though object oriented
graphical languages gave good spatial overview, one deficiency was detected. What is
the best granularity for a class? How large should a class be? Does an end user have
the same understanding of the size and features of a class as the designer has? Do all
designers share the same understanding of a certain class? It is interesting that these
questions were not answered with the graphical opportunities given in OMT, the
Booch method or UML. Instead Class Responsibility Cards were introduced in [3]
and [51] as a mean to promote better communication between several stakeholders.
For each class, an easily understandable template was generated. This template
consists of the class name and a list of responsibilities. A responsibility is a short
natural language description (i.e., one short sentence) of what the class offers to it’s
environment. A responsibility is not a class method. It is only a general description of
something that will be handled by one or more class methods. Together with these
templates, guidelines were given (e.g., how many responsibilities a class should have
in the best case). According to the number of responsibilities a certain class has, the
stakeholders made decision if a class should be divided into more fine-grained classes
or not.

Although the graphical representation of use cases introduced in OOSE were
adopted in UML and became very popular, there was a need to complement them
with a template [10]. Cockburn added additional, very important information to use
cases and also explained how use case descriptions should be applied during
requirements engineering. Hence, someone interested in the detailed model could
learn much more from use case descriptions than they could learn from the graphical
representation of a use case. A use case description is a form that has the following
items which must be filled out:

Use case name, preconditions for the use case, primary actors, secondary actors,
main (normal flow), alternative flows, exceptional flows, post conditions.

Today use case descriptions are widely accepted as templates which store detailed
information for a certain use case.

The latest approach using form templates is NDT [15], [16]. NDT classifies
requirements in storage, actor, functional, interaction and non functional
requirements. For each of these requirement types, NDT provides a special template

 Templates in Domain Modeling – A Survey 31

that has to be filled out during requirements elicitation. Particularly if there is a
certain storage requirement (e.g., customer) or functional requirement (e.g., DVD
rental) then a template is made for it. The two templates are typical examples of
storage requirements and functional requirements, respectively. A template for
functional interaction is similar to a use case description.

Table 1. Template for a NDT storage requirement (SR) according to [15]

SR-01 Customer
Description Natural person who has the right to rent DVDs.

Name and description Nature
Customer id: identification
for the customer

String

Name: the field stores the
customer’s name

String

Specific Data

Address: the field stores the
postal address

String

Table 2. Template for a NDT functional requirement (FR) according to [15]

FR-01 rent DVD
Description Renting process of a DVD which is offered and executed by a

clerk in the DVD rental store.
Actors Clerk AC-01: Clerk
Normal sequence Step Action
 1 The system provides possibilities to search for

DVDs
 2 The clerk searches for a certain DVD
 3 The clerk enters the Customer ID
 4 The clerk selects DVD and mark it as rented for

customer with given Customer ID
Exception Step Action
 2 DVD not available or all the requested DVDs are

rented – restart with 1 or stop.
 3 Customer ID not valid – stop the process
 3 Customer is not yet a registered customer,

continue with FR02 (customer registration)

4.2 Forms on the Instance Level

On the instance level, forms were used as input for schema design [2]. They took
forms used in offices and analyzed their structure. They identified several types of
structures which can appear on a form (e.g., parametric text, structured frame,
descriptive parts). In combination with their previously mentioned glossary approach
(see DATA ID in Section 4.1) they proposed a design consisting of three steps.

• Form analysis and area design,
• Form design,
• Interschema integration.

32 C. Kop and H.C. Mayr

In the first step, the concepts which appear in certain areas in the form and their
relationships to other concepts are examined. This knowledge is stored in glossaries.
During area design, knowledge about the form areas is taken to map each area to a
corresponding conceptual schema. During the second step, the derived schemata are
integrated for each form. Instead of several schemata which belong to the several
areas of one form only one integrated schema for the whole form remains. The last
step is another integration step. The schemata for the several forms are once more
integrated to an overall first draft conceptual schema.

Whereas the analysis of forms was done manually [2], other work [11] presented a
computer supported tool which derives a conceptual schema from a user interface.

Further works on user interfaces (forms) and their influence on database schemas
were made [14] [47]. Forms and user interfaces were used as a user centered mean to
query the database.

4.3 Controlled Language Sentences

Though, controlled natural language now is a buzzword, the idea behind it was
introduced in the 80s. Synonymous terms for controlled natural language are sentence
patterns and structured language.

For a better understanding of his Entity Relationship (ER) approach, Chen [8]
proposed 11 heuristics to map sentences to an equivalent ER schema. He used 11
structured English sentences and showed on the basis of their structure how the
elements of such a sentence can be mapped to elements of the ER schema (i.e., entity
types, relationship types or attributes).

Other research results (e.g., [5], [6], [30], [36], [37], [46], [48]) complemented and
refined these initial results. Some of them provided automatic transformation from
controlled language sentences by using parsers.

In [12] the functional grammar defined in [13] was used as the linguistic basis.
Dik’s verb patterns describe semantic roles which nouns can play in combination with
a certain verb. The result of these studies was the Color-X model [49]. It is a
graphical approach, but it is based on linguistic templates.

In [19] the term controlled language is explicitly used. There a controlled language
is applied for paraphrasing of ontologies.

In [32] an artificial controlled language (“Orthosprache” / “Normsprache”) was
developed. Natural language was the basis as well as logic. The artificial language
only contains words which are needed to describe the domain (e.g., nouns and verbs).
Words like prepositions and articles do not appear in this language. All notions of
such a language must be well defined. For instance if the term customer is used then
all stakeholders know what is meant. The same holds if another term e.g. “to order”
(customer order products), is used. During requirements analysis, the main aim of the
language is to support the deeper understanding of semantics of concepts
(“Fachbegriffe”) which are used in a certain domain.

Since controlled language avoids ambiguities, it is not only used as a basis for
conceptual modeling but also during requirements engineering. It is the task of the
requirements engineer to break down complex and ambiguous sentences to controlled
language requirements statements [38].

 Templates in Domain Modeling – A Survey 33

4.4 Controlled Language Sentences on the Instance Level

A typical representative for a controlled language on the instance level is NIAM [31].
Structured language generation and analysis were the proposed procedure to get a
graphical schema. Once again templates were important and were seen as a support.
The idea was that the stakeholders should describe the domain with simple example
facts (e.g., The student with student id XYZ visits the course with course number ABC;
The course ABC can be visited by the student with student id XYZ). From the set of
facts, a graphical model consisting of object types (e.g., student, course) with
connected roles (student visits; course can be visited) can be generated. This model
evolved and is now called ORM [21].

5 The Story of KCPM

KCPM (Klagenfurt Conceptual Predesign Model) is a template-based modeling
language that was initiated and developed in the Application Engineering research
group at Klagenfurt University.

5.1 The Beginnings

The idea to use glossaries was proposed by one of the authors according to his
practical experiences [28]. The DATA ID approach, which was published a few years
earlier, was introduced as an effective approach to communicate with the end users.

5.2 Research

Three master theses examined different aspects of the DATA ID approach. One
focused [17] on the transformation rules between glossaries and natural language
sentences. Another thesis [40] extended the model of the DATA ID by improving the
concept of event type (later called co operation type). The last one [23] focused on the
structural and functional aspects (thing types, operation types). The DATA ID data
glossaries were refined to thing glossaries (later called thing type glossaries). Also the
DATA ID operation glossary was refined (later called operation type glossary). Since
the representation was intended to be applied to any modeling concept of the new
approach, also a connection (type) glossary was introduced. This master thesis also
combined the glossary representation approach of DATAID with the fact-oriented
approach used in NIAM. Therefore an algorithm was developed which maps thing
types and connection types into entity types, value types, attributes and relationships
of an entity relationship model. During that thesis also the name and acronym
(KCPM) was born: KCPM = Klagenfurt Conceptual Predesign Model. With this
name it is pointed out that the approach must be applied in between requirements
analysis and conceptual modeling. It is a model that helps the software engineer to ask
the right questions during requirements engineering but also has the advantage that
the conceptual model can be generated easily from these working results. It is
“conceptual” since there must be an agreement upon the language notions. Since it
supports the development of the final conceptual design model it was called a
predesign model.

34 C. Kop and H.C. Mayr

A few years later a PhD thesis [24] started with the aim to integrate the results of
the first research studies. The outcome was a first, core, lean model based on a small
set of notions namely:

• Thing types (concepts): Notions/Object types which are important for the domain.
• Connection types: Relationships between thing types.
• Operation types: Services provided by the future system or components of the

system.
• Cooperation types with pre- and post conditions: Behavior that triggers operation

types.

Another aim of the PhD thesis was to build bridges between KCPM and natural
language sentences. Therefore, KCPM was embedded into the NIBA2 project. NIBA
was a German acronym for natural language based requirements analysis. Computer
linguists developed a grammar model for natural languages sentences called NTMS
(Naturalness Theoretical Morphosyntax) [18], [27]. The NTMS was taken as the basis
to examine the relationships between KCPM glossaries and natural language text.

There is still ongoing research on the KCPM topic. Meanwhile there is a PhD
project that examines the possibilities of schema integration using the modeling
notions of KCPM [50]. Another PhD project focuses on the questions of user centered
visualization of web services. Template-based visualization is seen as one good
possibility [20]. There are also research connections to other research groups. In 2006
a study started with the aim to map between KCPM thing types and connection types
to CBEADS smart business objects [26]. Two master thesis [29],[52] focused on
different mapping aspects from KCPM to the OLIVANOVA conceptual model [33],
[34] and [35]. Another master thesis [41] analyzed the usage of thing types and
connection types for teaching modeling in informatics education at a high school.
There is ongoing research with the University of Kharkiv on aspectual and qualitative
predesign [22],[42]. Furthermore KCPM is adopted as an ontology representation in
software engineering [1] in a joint project with the University of Marburg/Lahn.

5.3 Practical Studies

The research was also complemented by practical studies. After the first master theses
on this topic were finished, a student working in a local publishing company used the
approach to collect their requirements. It was demonstrated, that a domain expert
could validate the requirements very well using the collected information in the
glossaries.

In another master thesis [45], a further practice study with KCPM was done. The
primary goal of this master thesis was to investigate possible usage of KCPM in the
domain of business process modeling. Since the student already worked in a software
development enterprise which needed this information, the student was told to ask the
involved stakeholders in which situations glossaries can be preferred over graphical
representations. This study pointed out that glossaries are very well understood and
preferred in situations where a listing is necessary, or information can be presented as
check lists. Hence thing type glossaries, connection type glossaries as well as

2 NIBA was funded by the Klaus Tschira Stiftung Heidelberg.

 Templates in Domain Modeling – A Survey 35

operation type glossaries were seen as the best candidates for a glossary
representation (i.e., list of terms = thing type glossary, list of relationships =
connection type glossaries, list of services of the system = operation type glossaries).
The interviewed persons only had problems with cooperation type glossaries because
of their complexity. A cooperation type glossary contains the set of operation types
together with their preconditions and postconditions. The persons argued that a
graphical representation is more suitable. This study was a very interesting hint for
further research.

Other practical experiences were gathered in a medical domain. The content of this
requirements engineering project were data driven. New software was necessary to
manage the data, to get statistics from the database and for decision support of the
users. We found that thing type and operation type glossaries could be applied very
successfully for the collection of all the requirements.

 To summarize, parts of the KCPM approach could be applied in several practical
projects. The results were twofold. On the one hand it could be shown that there is a
need for template approaches. On the other hand, the feedback and experiences from
the practical studies were used to further improve the approach.

5.4 Beyond Glossaries – Current State of KCPM

The arguments for glossaries and graphical approaches in Section 2 and the practical
studies of Section 5.3 showed that glossaries are important but graphical approaches
must always be considered. It would be a mistake to ignore graphical approaches. The
reasons are simple:

• The different skills of different users must be always considered. Some of them
like templates and others like graphical approaches.

• The situation (purpose) is always changing in a typical requirements engineering
project. At one point in time, the requirements engineer must act like a medical
doctor extracting the causes from the symptoms of the patients (end user). In the
very next moment, he must give an overview to the end user or he needs the
overview for his own better understanding.

Because of these reasons, in one study [25] the main research goal was not to discuss
why and in which situation glossaries are better rather to think of how combining
different kinds of representations. Particularly:

How could a graphical representation be combined with template representations?
The conclusion was: Graphical and template-based representations must be seen as
equally valuable views within in a toolset.

6 Conclusion and Future Vision

6.1 Conclusion

A recent paper [43] describes how to switch among different aspects of a model (e.g.,
the dynamic aspects, static aspects etc.) within a meta-model. However, this was
presented once again for a graphical representation. Particularly, based on the meta-
model a tool provides a view with a class diagram and a view with the use case

36 C. Kop and H.C. Mayr

diagram, the meta-model guarantees consistency between the views. In other words, a
use case is not longer seen as an independent model within UML where relationships
to classes or other UML concepts are not checked.

The idea to switch between different aspects of a model consistently must be
combined with different representation techniques. It must not only be possible to
switch between classes and use cases but also to switch between a graphic
representation and a template-based representation.

6.2 Templates in SW Development – Future Vision

In order to describe our view of the future, firstly we comment on the past - in
particular something on the evolution of programming languages. At the beginning of
software development, assembler languages were used to program the computer. In
these assembler languages important and very commonly used combinations of low
level operations were clustered into macros. However these languages had the
disadvantage that they were close to the machine. The developers had to keep in mind
to which memory address and registers they have to store values. Third generation
languages like Cobol and Fortran were the first step towards a more human readable
programming language. These programming languages were used in specific
domains. Cobol was developed and used for implementing business solutions. Fortran
was mainly used in mathematical domains. During those days scientists also tried to
understand what is essential for good programming. The solutions were programming
languages for structured programming (e.g., ALGOL, Pascal etc.). Further style
guides (e.g., how to decompose large software into units that can communicate with
each other without side effects) lead to further evolutions of 3rd generation
programming languages to module and object based languages and then to object
oriented languages (e.g., Modula-2, Modula-3, Smalltalk, C++, Java etc.). The idea to
make programming languages more user-understandable was also realized in the 4th
and 5th generation languages. These languages were developed for certain kind of
applications (e.g., SQL for database queries, LISP and Prolog mainly for
problemsolving situations). These languages were more human readable since they
focused on the “WHAT” and not on the “HOW”. Using these languages the user had
to specify WHAT he needed and not how it should be executed. This was once again
achieved by hiding some internals (e.g., in SQL the user need not know the access
paths to records in a database; in Prolog he need not know the technical details about
backtracking but can rely on the Prolog interpreter to fire rules based on the available
facts).

If we summarize this, then it can be learn learned that during the evolution of
programming languages, complexity was hidden and style guides as well as patterns
were introduced. During the evolution of 3rd generation programming languages the
goal always was to “transform” 3rd generation language code to efficient machine
readable code in a 2nd or even 1st generation programming language. With model
driven architecture (MDA), 3rd generation programming languages became the final
target of transformation processes. Nowadays, MDA is based on the idea that every
platform independent model (PIM) will be extended with platform specific features.
Doing this, the PIM is transformed to a platform specific model (PSM) which itself
can be the PIM for the next transformation step. What is done now in MDA is an

 Templates in Domain Modeling – A Survey 37

evolution like the evolution of program languages in the past. Scientists came to an
overall understanding about good programming. Therefore programming languages
are now the target of transformation. Model driven architecture can be also seen as a
next step to make modeling more human understandable. During the evolution of the
programming languages, the main focus was to exempt the languages from machine-
specific pieces of code. During model driven architecture one of the ideas is that
pictures often represent more than 1000 lines of code. Once again certain kinds of
macros are introduced. Classes can be specified with its attributes but there is no need
to specify their constructors and their get- and set-methods. These methods are
automatically derived from the class specifications.

Combining this information with the knowledge about templates described in this
paper, one vision of the future might be the following. Scientists will come to a better
understanding about model driven architectures, based on style guides, design and
architectural patterns. They will improve the quality of model driven architecture. At
the end we will get a common understanding what a PIM needs in order to be of good
quality. Having this, the question will not be any longer to get executable software or
a completed source code according to a certain specification. Instead the focus will be
on how to get a specification (the first PIM) from requirements.

Templates will support this new construction idea. Instead of trying to get a
graphical model, requirements engineers will behave like medical doctors to collect
all the necessary information and to generate the target graphical model. Such a
working step will focus on extracting structured requirements specifications from
unstructured requirements specifications. Templates will play an important role
within this step. As an intermediate result, for quality checking the stakeholders will
mainly work with

• template (e.g., glossary) entries and
• only if really necessary with a graphical model
• that represents either the final PIM or an intermediate version.

On any of these intermediate results the stakeholders will be able to make corrections.
End user and designer together will be able to check the templates.

This will also be a further step towards human readability of models. The human
reader is now of another kind. It is no longer a technically experienced user but also
an application domain expert with little technical knowledge. Thus, in the future
modeling a software system will be like going through a specific checklist for this
software.

7 Summary

This chapter presented a survey on template-based conceptual modeling approaches.
Historical approaches were presented. Although some of them are mainly known as
graphical modeling techniques, they are based on templates (e.g., forms, glossaries
and in most cases linguistic templates). The aim of this chapter was to create
awareness, that the usage of graphical representation is not always the best solution. It

38 C. Kop and H.C. Mayr

strongly depends on the stakeholder’s skills and situation. In certain situations, a
template is better suited than a graphical representation. However the best usage of
graphical and template-based techniques is always a situation depended combination
of these techniques.

Acknowledgments. The authors would like to thank Dr. h.c. Klaus Tschira for his
support of the NIBA project. Without this support the extensive research on this
interesting topic would not have been possible. Furthermore, we thank all the
colleagues and students which have worked in the area of conceptual predesign.
Finally we would thank the reviewers for their helpful hints and comments with
which it was possible to improve this chapter.

References

1. Bachmann, A., Russ, A., Vöhringer, J., Hesse, W., Mayr, H.C., Kop, C.: OBSE - an
Approach to Ontology-based Software Engineering in the Practice. In: Reichert, M.,
Strecker, S., Turowski, K. (eds.) Proceedings of the 2nd International Workshop on
Enterprise Modeling and Information Systems Architectures. GI Lecture Notes in
Informatics (LNI), vol. 119, pp. 129–142. Köllen Verlag (2007)

2. Batini, C., Demo, B., Di Leva, A.: A Methodology for conceptual design of offices data
bases. Information Systems 9(2-3), 251–264 (1984)

3. Beck, K., Cunningham, W.: A Laboratory For Teaching Object-Oriented Thinking. In:
Conference Proceedings on Object-oriented programming systems, languages and
applications, pp. 1–6. ACM Press, New York (1989)

4. Boekelder, A., Steehouder, M.: Selecting and Switching: Some Advantages of Diagrams
Over Tables and Lists for Presenting Instructions. IEEE Transaction on Professional
Communication 41(4), 229–241 (1998)

5. Buchholz, E., Cyriaks, H., Düsterhöft, A., Mehlan, H., Thalheim, B.: Applying a Natural
Language Dialog Tool for Designing Databases. In: Proc. International Workshop on
Applications of Natural Language to Databases (NLDB 1995), pp. 119–133 (1995)

6. Buchholz, E., Düsterhöft, A., Thalheim, B.: Capturing Information on Behaviour with the
RADD-NLI: A Linguistic and Knowledge Based Approach. In: Riet, v.d., Burg, R.P., Vos,
A.J. (eds.) Proceedings of the 2nd Int. Workshop on Applications of Natural Language to
Information Systems (NLDB 1996), pp. 185–192. IOS Press, Amsterdam (1996)

7. Ceri, S. (ed.): Methodology and Tools for Database Design. North Holland Publ. Comp.,
Amsterdam (1983)

8. Chen, P.P.: English Sentence Structure and Entity Relationship Diagrams. Int. Journal of
Information Sciences 29, 127–149 (1983)

9. Coll, R.A., Coll, J.H., Thakur, G.: Graphs and Tables a Four-Factor Experiment.
Communications of the ACM 37(4), 77–86 (1994)

10. Cockburn, A.: Writing Effective Use Cases. Addison Wesley Publ. Comp., Reading (2000)
11. Choobineh, J., Mannino, M.V., Tseng, V.P.: A form-based approach for Database Analysis

and Design. Communication of the ACM 35(2), 108–120 (1992)
12. Dignum, F., Kemme, F., Kreuzen, W., Weigand, H., van de Riet, R.P.: Constraint

modelling using a conceptual prototyping language. Data & Knowledge Engineerng 2,
213–254 (1987)

 Templates in Domain Modeling – A Survey 39

13. Dik, S.: Functional Grammar. North Holland Publ. Company, Amsterdam (1978)
14. Embley, D.W.: NFQL: The Natural Forms Query Language. ACM Transactions on

Database Systems 14(2), 168–211 (1989)
15. Escalona, M.J., Reina, A.M., Torres, J., Mejías, M.: NDT a methodology to deal with the

navigation aspect at the requirements phase. In: OOPSLA Workshop: Aspect-Oriented
Requirements Engineering and Architecture Design (2004)

16. Escalona, M.J., Koch, N.: Metamodeling the Requirements of Web Systems. In:
Proceedings of the 2nd Int. Conf. Web Information Systems and Technologies (WebIST
2006). Lection Notes in Business Information Processing (LNBIP), vol. 1, pp. 267–280.
Springer, Heidelberg (2006)

17. Felderer, A.: Zur Tabellarisierung natürlichsprachlicher Anforderungsbeschreibungen.
Diplomathesis, Universität Klagenfurt (1992)

18. Fliedl, G.: Natürlichkeitstheoretische Morphosyntax – Aspekte der Theorie und
Implementierung. Gunter Narr Verlag, Tübingen (1999)

19. Fuchs, N.E., Höfler, S., Kaljurand, K., Rinaldi, F., Schneider, G.: Attempto Controlled
English: A Knowledge Representation Language Readable by Humans and Machines. In:
Eisinger, N., Maluszynski, J. (eds.) Reasoning Web. LNCS, vol. 3564, pp. 213–250.
Springer, Heidelberg (2005)

20. Gälle, D., Kop, C., Mayr, H.C.: A Uniform Web Service Description Representation for
Different Readers. In: Berntzen, L., Smedberg, A. (eds.) Proceedings of the second
International Conference on the Digital Society (ICDS 2008), pp. 123–128 (2008)

21. Halpin, T., Bloesch, A.: Data modelling in UML and ORM: a comparison. Journal of
Database Management 10(4), 4–13 (1999)

22. Kaschek, R., Kop, C., Shekhovtsov, V.A., Mayr, H.C.: Towards simulation-based quality
requirements elicitation: A position paper. In: Rolland, C. (ed.) REFSQ 2008. LNCS,
vol. 5025, pp. 135–140. Springer, Heidelberg (2008)

23. Kop, C.: Herleitung von EERM+ Schemata aus Zusammenhangsverzeichnissen, erweiterten
Ding- und Operationsverzeichnissen. Diplomathesis, Universität Klagenfurt (1993)

24. Kop, C.: Rechnergestützte Katalogisierung von Anforderungsspezifikationen und deren
Transformation in ein konzeptuelles Modell. Doctoral thesis, Universität Klagenfurt
(2002)

25. Kop, C.: Visualizing Conceptual Schemas with their Sources and Progress. International
Journal on Advances in Software 2(2,3), 245–258 (2009),

 http://www.iariajournals.org/software/ (last access September 27, 2010)
26. Liang, X., Ginige, A.: Smart Business Object - A New Approach to Model Business

Objects for Web Applications. In: ICSOFT 2006, pp. 30–39 (2006)
27. Mayerthaler, W., Fiedl, G., Winkler, C.: Lexikon der Natürlichskeitstheoretischen

Morphosyntax. Stauffenburg Verlag, Tübingen (1998)
28. Mayr, H.C., Dittrich, K.R., Lockemann, P.C.: Datenbankentwurf. In: Lockeman, P.C.,

Schmidt, J.W. (eds.) Datenbank-Handbuch, pp. 486–552. Springer, Heidelberg (1987)
29. Michael, J.: Connecting the dynamic part of KCPM with the OlivaNova Modeler,

Masterthesis, Universität Klagenfurt (2010)
30. Moreno, A., van de Riet, R.P.: Justification of the equivalence between Linguistic and

Conceptual Patterns for the Object Model. In: Proc. 3rd Int. Workshop on Application of
Natural Language to Information Systems, pp. 57–74 (1997)

31. Nijssen, G.M., Halpin, T.: Conceptual Schema and Relational Database Design – A fact
oriented approach. Prentice Hall Publ. Comp., Englewood Cliffs (1989)

40 C. Kop and H.C. Mayr

32. Ortner, E.: Methodenneutraler Fachentwurf. B.G. Teubner Verlagsgesellschaft, Stuttgart,
Leibzig (1997)

33. Pastor, O., Molina, J.C., Iborra, E.: Automated Production of Fully Functional Applications
with OlivaNova Model Execution. ERCIM News (57), 62–64 (2004)

34. Pastor, O., Gomez, J., Insfran, E., Pelechano, V.: The OO-method approach for
information systems modeling: from object-oriented conceptual modeling to automated
programming. Information Systems 26(7), 507–534 (2001)

35. Pelechano, V., Pastor, O., Insfran, E.: Automated code generation of dynamic specializations:
an approach based on design patterns and formal techniques. Data and Knowledge
Engineering 40(3), 315–353 (2002)

36. Rolland, C., Ben Achour, C.: Guiding the Construction of textual use case specifications.
Data & Knowledge Engineering Journal 25(1-2), 125–160 (1998)

37. Rolland, C.: An Information System Methodology Supported by an Expert Design Tool.
In: Pirow, P.C., Duffy, N.M., Ford, J.C. (eds.) Proceedings of the IFIP TC8 International
Symposium on Information Systems, pp. 189–201. North Holland Publ. Company,
Amsterdam (1987)

38. Rupp, C.: Requirements Engineering und Management. Hanser Verlag (2004)
39. Ryszard, J., Parnas, D.L., Zucker, J.: Tabular Representations in Relational Documents. In:

Hoffman, D., Weiss, D.M. (eds.) Software Fundamentials – Collected Papers by David
Parnas, pp. 71–85. Addison Wesley Publishing Comp., Reading (2001)

40. Schnattler, M.: Herleitung von Ereignisschemata aus erweiterten Operations- und
Ereignisverzeichnissen. Diploma thesis, Universität Klagenfurt (1992)

41. Schein, M.: Moderne Modellierungskonzepte der Informatik in der Schulpraxis,
Diplomathesis, Universität Klagenfurt (2010)

42. Shekhovtsov, V., Kostanyan, A., Gritskov, E., Litvinenko, Y.: Tool Supported Aspectual
Predesign. In: Karagianis, D., Mayr, H.C. (eds.) 5th International Conference on
Information Systems Technology and its Applications (ISTA 2006). LNI, vol. P-84, pp.
153–165. Köllen Verlag (2006)

43. Sinz, E.: Tool-Unterstützung für die SOM-Methodik: Anforderungen und Lösungsstrategien.
In: Presentation slides: 1st International Open Models Workshop, Klagenfurt (March 2010)

44. Stålhane, T., Sindre, G., du Bousquet, L.: Comparing Safety Analysis Based on Sequence
Diagrams and Textual Use Cases. In: Pernici, B. (ed.) CAiSE 2010. LNCS, vol. 6051, pp.
165–179. Springer, Heidelberg (2010)

45. Stark, M.: Geschäftsprozessmodellierung im konzeptuellen Vorentwurf, Diplomathesis,
Univeristät Klagenfurt (2000)

46. Tjoa, A.M., Berger, L.: Transformation of Requirement Specification Expressed in Natural
Language into an EER Model. In: Elmasri, R.A., Kouramajian, B., Thalheim, B. (eds.)
Proc. 12th International Conference on Entity Relationship Approach, pp. 127–149.
Springer, New York (1991)

47. Terwillinger, J.F., Delcambre, L.M., Logan, J.: Queyring through a user interface. Data &
Knowledge Engineering 63, 774–794 (2007)

48. Vadera, S., Meziane, V.: From English to Formal Specifications. The Computer
Journal 37(9), 753–763 (1994)

49. Van de Riet, R.: Mokum for Correctness by Design in Relation to MDA, In: Kaschek R.,
Kop, Ch., Steinberger, C., Fliedl, G. (eds.) Information Systems and e-Business
Technologies. Lecture Notes in Business Information Processing (LNBIP), vol. 5, pp.
352–364 (2008)

 Templates in Domain Modeling – A Survey 41

50. Vöhringer, J., Mayr, H.C.: Integration of schemas on the pre-design level using the
KCPM-approach. In: Nilsson, A.G., Gustas, R., Wojtkowski, W.G., Wojtkowski, W.,
Wrycza, S., Zupancic, J. (eds.) Advances in Information Systems Bridging the Gap
between Academia & Industry, pp. 623–634. Springer, Heidelberg (2006)

51. Wirfs-Brock, R., Wilkerson, B.: Object-oriented design: a responsibility-driven approach.
In: Conference proceedings on Object Oriented Programming Systems Languages and
Applications, pp. 71–75. ACM Press, New York (1989)

52. Yevdoshenko, N.: A Proposal for Model Driven Development Life Cycle: From KCPM
Requirements Specifications to OLIVANOVA Conceptual Model, Master Thesis,
Universität Klagenfurt (2006)

	02 Templates in Domain Modeling – A Survey
	Templates in Domain Modeling – A Survey
	Introduction
	Types of Templates
	Templates for the Schema (Model) Level
	Templates for the Instance Level

	Graphical Modeling Languages vs. Template-Based Approaches
	An Advocacy for Graphical Modeling Languages?
	Limitations of Graphical Modeling Languages
	Why Template-Based Approaches?
	Template-Based versus Diagrams – Comparison Studies

	A Historical Survey of Important Template-Based Approaches
	Forms, Tables, Matrices, Glossaries
	Forms on the Instance Level
	Controlled Language Sentences
	Controlled Language Sentences on the Instance Level

	The Story of KCPM
	The Beginnings
	Research
	Practical Studies
	Beyond Glossaries – Current State of KCPM

	Conclusion and Future Vision
	Conclusion
	Templates in SW Development – Future Vision

	Summary
	References

