
FROM NATURAL LANGUAGE REQUIREMENTS TO A CONCEPTUAL MODEL

Christian Kop, Günther Fliedl, Heinrich C. Mayr

Alpen-Adria Universität Klagenfurt

Applied Informatics/Application Engineering

Universitätsstasse 65 – 67, 9020 Klagenfurt

(chris | guenther | heinrich)@ifit.uni-klu.ac.at

ABSTRACT

In literature it is described in great detail how class

diagrams and ER diagrams or UML class diagrams

are derived from natural language sentences. It is

normally assumed, that there is a direct

correspondence between natural language elements

(e.g., words) and conceptual model elements. We do

not strictly follow this assumption because of the

complexity of natural language with its ambiguities

and ellipsis. Hence in this paper a stepwise generation

of a conceptual model out of natural language

requirements sentences is proposed. According to the

ideas of MDA we assume that automatic

transformation steps from the source model (in our

case natural language) to the target conceptual model

(e.g., UML class diagram) make sense. In addition to

that we suggest that the designer should play an

important part during transformation. It is furthermore

proposed to introduce an interlingua which helps to

detect defects and provides traceability between

sentences and the model elements.

Index Terms – natural language processing,

interlingua, conceptual modeling, defect detection

1. INTRODUCTION

In most cases the requirements are presented on two

levels: the level of end user needs and the level of

developers or requirements engineers models. End

user requirements usually are expressed via natural

language; requirements handled by engineers are

usually expressed through formal, conceptual models.

In many cases this diverging way of representing

knowledge is the main reason for misunderstandings

between users and engineers concerning initial

requirements. The discrepancy disables the possibility

of validating requirements, which is an important step

in the process of requirements engineering.

To handle such problems we proposed an intermediate

level for requirements representation, an interlingua

connecting the natural language level of the end user

and conceptual model level produced by engineers.

The approach provides instruments for the

representation of intermediate results and the

traceability between intermediate results and the

original sentences. It supports automated mapping

from natural language requirements to interlingua

specifications and automated mapping from the

interlingua representation to the conceptual models.

The linguistic processing step focuses on the transfer

of written textual requirements to an interlingua, the

so called Pre-design Model. The “Klagenfurt

Conceptual Pre-design Model (KCPM)” [6] provides

a glossary and a graphical representation and it is used

as a basis for the mapping to the conceptual model

(e.g., UML). We propose that the basic notions

introduced in this interlingua should correspond to

hypothetical basic linguistic categories like nouns,

verbs, etc. Thus, the goal of the whole process which

is called NIBA (“Natürlichsprachliche

Informationsbedarfsanalyse”) is to automate the

process of producing pre-design models by extracting

their entries from the end-user’s natural language

requirements statements.

To enhance the mapping process a specific framework

for annotating natural language descriptions on

different layers was developed.

The paper is structured as follows. In the next section

the related work is described. The linguistic

processing step is introduced in Section 3. Section 4

explains the interpretation step. Section 5 focuses on

the interlingua and their possibilities. Section 6 gives

an overview of the mapping to the conceptual model.

The paper is summarized in Section 7.

2. RELATED WORK

The interpretation of natural language has a long

tradition. In earlier approaches heuristics were

proposed. Some of these approaches were described

in [3] [1] [8] [7]. Chen presented 11 rules to generate

conceptual model elements (entity types and

relationship types) from structured sentence. Excerpts

of these rules can be found in the next listing [3].

67

 (Rule 1) A common noun in English

corresponds to an entity type.

 (Rule 2) A transitive verb in English

corresponds to a relationship type in an ER

diagram.

 (Rule 3) An adjective in English corresponds to

an attribute of an entity in an ER diagram.

 (Rule 4) An adverb in English corresponds to an

attribute of a relationship in an ER diagram.

 (Rule 5) If the sentence has the form: „There

are … X in Y“ then we can convert it into the

equivalent form „Y has … X “.

 (Rule 7) If the sentence has the form „The X of

Y is Z“ and if Z is not a proper noun, we may

treat X as an attribute of Y.

Abbot [1] used heuristics for the generation of

program specifications. Parsing techniques were

introduced in [2] and [11]. NL-OOPS [14] uses the

LOLITA [15] natural language processing toolkit with

an internal knowledge base to generate first cut

conceptual models. Meanwhile tagging and chunking

is the state of the art for the linguistic step. In [13] an

approach is described which uses part of speech

tagging and morphological analysis for the generation

of conceptual model element candidates. Additionally

an ontology (world model) was used to refine the

candidates for the project specific conceptual model

(discourse model).

3. LINGUISTIC PROCESSING

The system solves the task of Natural Language

Processing of English requirements texts by producing

chunked and semantically annotated text, which is

made ready for the KCPM modeling notions

extraction in the interpretation stage of the project. In

a first stage it accepts the tagged sentences which are

produced by QTag [16]. This output is refined and

certain structures are chunked together. Figure 1 in the

appendix shows such a chunk tree representing the

syntactic structure including phrasal, feature inheriting

nodes.

This chunking output was processed by a modular

system of linguistic subsystems including the

following functions:

 The identification of compound nouns. We

suppose that unclear compound boundaries are

very often motivated through ambiguity of

complex terms, e.g., the implicit structure of

compounds or other groups of words.

 The extraction and generation of inflectional

word forms.

 Extraction of derivational morphological

information.

 The identification of multi-words units and

idiomatic expression identification. This is made

possible by dynamically extending linguistic

knowledge inside the lexicon component.

 Verb subclass identification. The filtered verb

classes are based on the NTMS-system

(“Natürlichkeitstheoretische Morphosyntax”) [4]

included in the NIBA framework.

4. INTERPRETATION

4.1 General guidelines for interpretation

Following the different approaches mentioned in the

related work section, the following can be learned for

the interpretation of natural language sentences:

 Common (individual) nouns are candidates for

classes and attributes.

 An adjective and a noun together are candidates

for specialized classes.

 Proper nouns are candidates for instance labels.

 A transitive verb is a candidate for a relationship

type.

 The nouns related to the verbs are the involved

classes of the relationship type.

 Also prepositions can be candidates for

relationship types.

In other words, given a source language (e.g., natural

language) and a “meta model” (i.e., the grammar

description of the sentence) as well as a target

language (e.g., a conceptual model and its meta

model), certain instances of the source language can

be mapped to instances of the target language. This is

achieved by defining equivalences between syntactic

structures of the source model and syntactic structures

of the target model.

These general rules must be adopted for the certain

situation (i.e., the annotated natural language). In our

case the NTMS was used for annotating the natural

language sentences with syntactic grammar

information. Since the NTMS defines N0 as a noun

and N3 as a noun phrase, a class can be derived from

a noun (N0) or noun phrase (N3) respectively. If we

find a verb (V0) together with two noun phrases then

a relationship can be derived from such a pattern.

Figure 1 in the appendix shows such an example.

Although these and other heuristics are commonly

used they cannot really support the interpretation. The

next section will explain some difficulties of

interpretation.

68

4.2 Problems of Interpretation

The problems of interpretation arise since the same

syntactic structure of a phrase can be interpreted

differently. A typical example of this problem is that

the combination of an adjective and a noun can be

seen as a specialization of that noun. It is also possible

that the adjective together with the noun is the needed

concept. Another problem: It is not always possible to

distinguish between a class and an attribute just by

analyzing one single sentence. In literature [11] the

subject-predicate-object structure with the predicate

“has” (e.g., X has Y) is interpreted as follows. The

subject X is a class and the object Y is an attribute.

However in [9] it was shown that the verb “has” is

very ambiguous.

Since mainly syntactic structures are analyzed and

mapped to elements of the conceptual model there is

no guarantee that all the extracted elements are

relevant for the target model. There is no guarantee

that the model assembled only with the extracted

elements will be complete or consistent. Even worse if

an arbitrary text is taken for analyzing and

interpretation there is no guarantee that the intention

of the customer fits with the intentions of the designer.

3.4 Solution

As one possible solution it is necessary to give the

designer the freedom to select those extracted model

elements which seem to be necessary for the target

model. Furthermore it is necessary to introduce an

interlingua. This interlingua presents the designer the

result of the extraction process and the designer can

maintain and refine the results. Hence the model

presented in the interlingua does not represent the

final result or final conceptual model. It represents a

intermediate result that must be discussed, refined and

improved. A tool was implemented with which the

designer can select necessary model elements and

manage the elements in the model of the interlingua.

This also includes a tool feature for the mapping from

the interlingua to the conceptual model.

5. INTERLINGUA

5.1 Overview

According to the underlying paradigm of how a

stakeholder perceives the “world”, two types of

conceptual modeling approaches can be distinguished:

 Entity type and object oriented approaches.

 Fact oriented approaches.

In the first paradigm the “world” is seen as a world of

objects which have properties. Therefore a clear

distinction is made between object and object types

respectively and their properties. Representatives of

this paradigm are the classical ER approach and

UML. Fact oriented approaches on the other hand see

the “world” as a world of facts. Facts describe objects

and their roles within a relationship. No distinction is

made between objects and their properties. Every

concept is treated equally in a first step.

Representatives of this kind of paradigm are NIAM

[7] and its successor ORM [5]. Both approaches have

pros and cons. Object oriented approaches look very

compact. In a typical object oriented class diagram

attributes are embedded in the class representation.

No additional connections between classes and

attributes are necessary which would expand the

diagram. On the other hand, many revisions must be

made if such a diagram is used too early in the design

phase. Due to information that is collected, classes

might become attributes and attributes might become

classes. According to [5] this is a reason why fact

oriented approaches are better suited to be used as an

interlingua.

Since the interlingua is placed before the conceptual

model during an early phase of design the fact

oriented paradigm was preferred. Nevertheless there

must also be the necessity to provide an easy

transformation from the interlingua to a conceptual

model like UML since it is actually the standard for

conceptual modeling. Hence the interlingua for

conceptual modeling of structural aspects of an

information system consists of the following basic

notions:

 Thing type: Any notion which is important in a

certain universe of discourse is treated as a thing

type. Since attributes are not defined also notions

like person name, course id etc. are seen as thing

types.

 Connection type: Connection types relate thing

types to each other. Special connection types like

generalization or aggregation can be defined.

The aim of the interlingua is also to be a support for

all kinds of stakeholders (designers and end users).

Therefore a graphical and glossary based

representation was used for the collection of

requirements (see Figure 3 in the appendix for the

graphical representation – the glossary representation

is hidden).

5.2 Defect detection support

Beside the purpose to provide a communication

platform between stakeholders, the interlingua can

also support the detection of structural inconsistencies

and incompleteness. The simplest one can be detected

if the designer takes a look at the cardinality

definitions of the connection types. As it can be easily

seen, all of these cardinality descriptions have a

“?..?”. This means that cardinalities could not be

extracted from the textual description.

Another possibility is to count the number of

connection types of a thing type. This is described in

detail in [12]. With this strategy, centered thing types

69

can be detected (see Figure 4 in the appendix). The

more connection types a thing type has, the more

centered or important it is. Such centered thing types

appear with a bigger rectangular and in another color

(e.g., green) than other thing types which seem to be

less important. However, this must not necessarily

reflect the end users intention. Therefore this strategy

is used to confront the end user with the result and to

discuss the result with him. For instance if the end

user wonders why certain thing types like course and

professor are not so important (they appear in white

color and the rectangular is not so big as the

rectangular for assistant or employee) then this can be

the hint for a defect in the original specification.

If a mapping preview is made, then orphan classes

[10] can be detected. The Figure 5 shows such a case

for the university example. In this case thing types like

university, faculty, department, assistant, employee,

professor, budget, ut8 and ut3 were detected to be

class candidates. All the thing types which appear in

white color are currently candidates for attributes.

Once again this is not the final result but a starting

point for communication, discussion and refinement.

As can be seen in Figure 5, professor, budget, faculty

and university do not have any related attributes.

Hence the mapping preview gives also hints for

defects.

5.3 Traceability

Sentences from which thing types and connection

types can be extracted are also stored as “Sources” in

the interlingua model. If a thing type was extracted

from the sentence, then a relation between the thing

type and the sentence exists. The same holds for

connection types.

6. MAPPING TO THE CONCEPTUAL MODEL

In order to guarantee the mapping to a conceptual

model rules are applied. These rules can be classified

into

 Laws vs. proposals.

 Direct vs. indirect rules.

Laws are much stricter than proposals. If a mapping

rule is a law than a mapping to a certain target concept

(e.g., class) cannot be ignored otherwise the syntax of

the conceptual target model will be incorrect.

Proposals on the other hand only give hints. The

syntax of the target model will not be wrong if these

hints are ignored.

An indirect rule not only uses the semantic

relationship to decide about the mapping but also

information about previous mappings. For example, if

a concept X is already mapped to an attribute and a

concept Y is related to that attribute X then an indirect

rule for Y detects a mapping possibility (Y will

become a class).

This mapping approach also applies meta-rules to

resolve conflicting situations between the rules. An

example of a meta rule is: “Laws overrule proposals”.

7. CONCLUSION AND FUTURE WORK

In this paper an overview of a mapping process

from natural language descriptions to a conceptual

model was given. It was also described that such a

process is not straight forward. Instead the designer

must handle problems. As one possible solution the

interlingua (KCPM) was introduced. This model gives

the designer an overview of the output of natural

language processing and provides him with some help

to improve it. Without generating the UML target

model, he is able to revise it. Different presentation

techniques (e.g., graphical view and glossary view)

make it possible to communicate with the end user.

In future, it is planned to find more possibilities to

detect defects. These defect detection strategies

should then be applied on the notions which were

extracted from English or from German requirements

sentences.

8. REFERENCES

[1] R.J. Abbot, “Program Design by Informal English

Descriptions,” Communication of the ACM, Vol. 26

No. 11, pp. 882 – 894, 1983.

[2] E. Buchholz, H. Cyriaks, A. Düsterhöft, H.

Mehlan, B. Thalheim, B.. “Applying a Natural

Language Dialogue Tool for Designing Databases,”.

International Workshop on Applications of Natural

Language to Databases (NLDB’95), pp. 119 – 133,

1995.

[3] P. Chen “English Sentence Structure and Entity

Relationship Diagrams,” International Journal of

Information Siences, Vol. 29., pp. 127-149, 1983

[4] G. Fliedl, Natürlichkeitstheoretische Morpho-

syntax – Aspekte der Theorie und Implementierung,

Gunter Narr Verlag Tübingen, 1999.

[5] T. Halpin, “UML Data Models from an ORM

Perspective Part 1,” Journal of Conceptual Modeling

1998.

[6] H.C. Mayr, Ch. Kop, “A User Centered Approach

to Requirements Modeling, Proceedings

Modelierung,” Lecture Notes in Informatics LNI, p-

12, GI-Edition, pp. 75-86, 2002.

[7] G.M. Nijssen, T.A Halpin, Conceptual Schema

and Relational Database Design – A fact oriented

approach. Prentice Hall Publishing Company, 1989.

70

[8] M. Saeki, H. Horai, H. Enomoto, “Software

Development from Natural Language Specification,”

Proceedings of the 11th International Conference on

Software Engineering, pp. 64 – 73, 1989.

[9] V.C. Storey, “Understanding Semantic

Relationships,” VLDB Journal, Vol. 2, pp. 455 –

488., 1993.

[10] B. Tauzovich, “An Expert System for Conceptual

Data Modeling,” Proceedings of the 8th International

Conference on Entity Relationship Approach, North

Holland Publ. Company, pp. 205 – 220, 1989.

[11] A.M. Tjoa, A.M.; L. Berger, “Transformation of

Requirement Specification Expressed in Natural

Language into an EER Model, ” Proceedings of the

12th International Conference on Entity Realtionship

Approach, Springer Verlag, New York, pp. 127-149,

1993.

[12] Ch. Kop, “Visualizing Concetual Schemas with

their Sources and Progress,” International Journal on

Advances in Software, Vol. 2. u. 3., pp. 245 – 258,

2009.

[13] H. M. Harmain, R. Gaizauskas, “CM-Builder: An

Automated NL-based Case Tool,” 15th IEEE

International Confernce on Automated Software

Engineering (ASE’00), pp. 45 – 54, 2000.

[14] L. Mich, J. Mylopoulos, N. Zeni, “Improving the

Quality of Conceptual Models with NLP Tools: An

Experiment,” Technical Report DIT-02-0047, Dept.

of Information and Communication Technology,

Univ. of Trento, 2002.

[15] R. Garigliano, R. Morgan, M. Smith, “The

LOLITA System as a Contents Scanning Tool,”

Proceedings of the 13th International Conference

Artificial Intelligence, Expert Systems, and Natural

Language Processing, 1993.

[16] D. Tufis, O. Mason, “Tagging Romanian Texts:

a Case Study for QTAG, a Language Independent

Probabilistic Tagger,” Proceedings of the First

International Conference on Language Resources &

Evaluation (LREC), Granada (Spain), p.589-596,

1998.

APPENDIX

Fig. 1. Tagged sentence with chunk tree

71

Customer

Product

customer no

name

address

buys product id

name

price
Class diagram ORM diagram

Customer

Product

Name

buys

is bought by

… …

…

…
has

Customer

Product

customer no

name

address

buys product id

name

price
Class diagram ORM diagram

Customer

Product

Name

buys

is bought by

… …

…

…
has

Fig. 2. Class diagram versus ORM diagram

Fig. 3. Graphical representation of the interlingua (university example)

72

Fig. 4. Visualization of centered thing types

Fig. 5. Mapping preview

73

