
J. Yang et al. (Eds.): UNISCON 2009, LNBIP 20, pp. 91–102, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Facilitating Reuse of Code Checking Rules
in Static Code Analysis

Vladimir A. Shekhovtsov, Yuriy Tomilko, and Mikhail D. Godlevskiy

Department of Computer-Aided Management Systems,
National Technical University “Kharkiv Polytechnical Institute”, Ukraine

shekvl@yahoo.com, tomilko.yuriy@mail.ru, god_asu@kpi.kharkov.ua

Abstract. Currently, the rationale of applying code checking rules in static code
analysis is often not captured explicitly which leads to the problems of rule re-
use in similar development contexts. In this paper, we investigate the process of
tracing possible sources of such rules back to design decisions and quality re-
quirements. We present an idea of storing the rationale information along with
particular code checking rules in a rule repository. We argue that such informa-
tion is related to particular design decisions or patterns that need to be enforced
by the rule and to generic properties of these decisions such as corresponding
quality characteristics. We show how a reuse support tool with underlying rule
repository can aid in defining the recommended set of rules to be reused while
making recurring design decisions or applying design patterns.

1 Introduction

Static code analysis is a special kind of inspection [17] which is performed over the
source (or bytecode-compiled) code with a goal of revealing and correcting errors
introduced during software development [1, 33]. It also helps assessing software qual-
ity attributes and checking standards compliance. Specific static analysis tools [29,
31] (such as FxCop, Gendarme, NDepend, FindBugs, PMD etc.) allow the user to
apply the set of code checking rules to the code looking for known bugs, various vio-
lations of common recommendations and policies, other code deficiencies. Applied
properly, static code analysis tools free the code analyst from routine work while al-
lowing concentrating at more complex tasks.

Working with these tools, however, presents its own set of issues. Producing the
full set of code checking rules for the project requires significant effort. Predefined
sets of rules packaged with tools seldom satisfy the developer; in these cases custom
rules need to be created. If such rules have to be implemented using general-purpose
languages such as Java or C# [5, 6, 13], this becomes time-consuming and routine
work: it is necessary to provide a technical “boilerplate” code enabling the features
provided by the tool (e.g. initializing its API), implement the rule-checking code
itself, and create the set of configuration parameters allowing run-time rule customi-
zation. As a result, rule reuse problem becomes important. Unfortunately, reusing
complete sets of rules is not an option in most cases as the projects and tools usually

92 V.A. Shekhovtsov, Y. Tomilko, and M.D. Godlevskiy

differ enough to make such action impossible. On the other hand, it is desirable to
perform at least partial rule reuse as the projects often require similar rules.

One of the problems with rule reuse is that currently the rationale of applying the
rules in particular projects is often not documented explicitly. Rules appear “out of
developer’s experience” as no rule traceability back to the previous stages of the
software process is supported. As a result, the reuse of such rules becomes difficult as
nothing suggests the developer that the current project offers the prerequisites for the
rules already used in some previous project.

In this paper, we will show how the rule reuse problem can be addressed via inves-
tigating the rationale behind the code checking rules. To do this, we turn to earlier
steps of the software process (architectural design and requirements engineering) and
look at design decisions, design patterns, and software quality requirements as possi-
ble candidates for this rationale. We argue that knowing the origin of every rule helps
to achieve its reuse in future if the same context is encountered again during the de-
velopment. To facilitate reuse, we propose establishing the rules repository where the
rationale information is stored alongside the information about the rules themselves.

The rest of the paper is organized as follows. Section 2 presents the background in-
formation. Section 3 investigates possible rationale for application of the rules; sec-
tion 4 presents a conceptual model of code checking rules and their rationale which
can be used as a foundation of rules repository schema. Section 5 outlines possible
reuse cases and scenarios using the knowledge of the code checking rules rationale.
Section 6 surveys the related work, following by a conclusion and future work de-
scription in Section 7.

2 Background

In this section, we briefly introduce code checking rules and some candidates for their
rationale, in particular, design decisions and quality requirements.

2.1 Code Checking Rules

The main purpose of static code analysis tools [29, 31] is establishing the set of code
checking rules looking for common bugs and bad practices in software and reporting
the results to the analyst. Such rules define undesirable or prohibited code solutions
(code anti-patterns) usually expressed in terms of the constructs of the particular target
programming language (class, interface, method, property etc.) and other applicable
(e.g. API-related) concepts. Such solutions include e.g. invalid usage of a particular
class, undesirable sequence of method calls, improper access to a particular method
from other particular method, violating some guidelines for class implementation or
API usage (e.g. failing to implement a mandatory interface or property).

Let us look at an example of a code checking rule. Maintaining dependencies be-
tween the components in multi-tier architecture may lead to the restriction of using
particular set of classes from other particular set of classes, for example, presentation
tier classes cannot be used from business logic classes. This leads to the following rule:
it is forbidden to use types belonging to a presentation tier from any types belonging to

 Facilitating Reuse of Code Checking Rules in Static Code Analysis 93

a business logic tier. An example of an implementation of this rule (using Code Query
Language (CQL) [3] supported by NDepend tool) is as follows:

WARN IF Count > 0 IN SELECT METHODS FROM "BusinessLogic"
WHERE IsDirectlyUsing "PresentationLogic"

2.2 Design Decisions and Quality Requirements

Design decisions are “the significant decisions about the organization of a software
system” [22]. Such decisions are made during the design step of the software process
and reflect the view of the system that needs to be implemented. Actually, every de-
sign decision directly controls the code development. The extensive ontology of such
decisions is proposed by Kruchten [23], it identifies three major decision categories:
existence decisions (related to some functionality present or absent in a system),
property decisions (related to some quality attribute supported by a system) and ex-
ecutive decisions (not related directly to the functional elements or their qualities). In
recent works, the complete software architecture tends to be viewed as a set of such
decisions [20]. Examples of design decisions can be “the system will have three-tier
architecture”, “the system will include the cache manager using up to 5 background
threads and allowing up to 1000 concurrent clients”.

Software quality requirements represent the desirable quality characteristics for a
system [9, 12] (such as availability, performance, safety, or security) as seen by its
stakeholders. Examples of quality requirements are “response time for operations with
a customer order must not exceed 0.2 sec under the load up to 700 requests per sec-
ond”, “all attempts to have access to the order processing system must be authorized”.
Such requirements are actually supported or opposed by corresponding design deci-
sions [35], we will look at this issue in detail in subsection 3.3.

3 The Rationale Behind the Code Checking Rules

In this section, we show how the rationale behind the code checking rules can be re-
vealed. We trace this rationale first to existing design decisions and then to corre-
sponding software quality requirements.

3.1 Code Checking Rules and Design Decisions

To find the rationale behind the application of a particular code checking rule, we
need to look at the activities belonging to earlier steps of the software process. We
argue that as the set of code checking rules enforces a particular design decision, it is
natural to accept that decision as a direct rationale for these rules.

For example, the design decision “the logical view is organized in 3 tiers named
DataAccessLogic, BusinessLogic and PresentationLogic” is a direct rationale for es-
tablishing the following code checking rule “no methods of classes belonging to Pre-
sentationLogic package can be called from either DataAccessLogic or BusinessLogic
packages” as the creation of this rule is a direct consequence of accepting the design
decision.

94 V.A. Shekhovtsov, Y. Tomilko, and M.D. Godlevskiy

As a software architecture can be seen as a set of interconnected design decisions
[20] and Kruchten’s design decision ontology [23] adds to this set the decisions not
related to architecture (introducing the executive decisions related to organizational
issues, the choice of technology or a development tool) we argue that every code
checking rule can be traced to the corresponding design decision. Actually, such rule
is an integral part of the implementation of this design decision.

The design decision usually contains some information that can be used to param-
eterize the corresponding rules (Fig.1). For example, if it was defined that the presen-
tation layer code is contained in a package named PresentationLogic, the name of the
package parameterizes the rule restricting an access to this package. Numeric infor-
mation (such as cache size, maximum number of threads etc) can be used this way as
well. Reusing such rules requires defining the values for specified parameters.

DesignDecision

CodeCheckingRule
*

*

enforces

ParameterSlot1 *

Fig. 1. Design Decision and Code Checking Rule

Specifications of design decisions can be treated to some degree as code quality
requirement specifications as they define the desired quality properties of the corre-
sponding implementation code. These specifications are also similar to requirement
specifications as they are often informal (actually, the design decisions are often left
expressed in natural language). In fact, some kind of NLP-based requirement elicita-
tion and analysis can be performed to actually map these specifications into code
checking rules (similarly to what is proposed by conceptual predesign [26] and the
NIBA project [10] to map traditional software requirements into design-time notions).
This mapping is a target for future research, in this paper we treat the design decisions
as “black boxes” assuming they are specified in a format that allows retrieving the
information intended for rule parameterization.

3.2 Code Checking Rules and Design Patterns

From the point of view of facilitating reuse, it would be even more interesting and
useful to look at design patterns as possible rationales for code checking rules. The
simplest way to deal with this case is to treat the pattern as a special kind of design
decision which has predefined meaning and can be applied in different contexts (this
is the view accepted in e.g. [20]). In this case, the set of code checking rules can be
seen as enforcing the design pattern the same way as it enforces any other design de-
cision. Even in this case, however, we would recommend distinguishing design pat-
terns from other (ad-hoc) design decisions as it would greatly help in documenting the
likely chances of reuse (as design patterns in most cases become reused more often
than ad-hoc design decisions).

 Facilitating Reuse of Code Checking Rules in Static Code Analysis 95

Another approach is to view design patterns as “enablers” for several design deci-
sions at once (as original GoF book states “once you know the pattern, a lot of design
decisions follow automatically” [11]). In this situation, a design pattern can be treated
as a rationale for all code checking rules corresponding to the enabled decisions. For
example, applying Model-View-Controller design pattern enables the set of existence
design decisions related to defining the program units implementing all parts of a so-
lution (such as “the package DataView will contain the code for the view class and all
supporting program artifacts”). These decisions, in turn, are enforced by a set of code
checking rules (e.g. prohibiting direct access from the model to the view).

Making able to relate code checking rules to design patterns is probably the most
important reuse facilitation technique as such rules become reused frequently.

3.3 Code Checking Rules and Quality Requirements

Now we can investigate the possibility of tracing the rationale of code checking rules
further – to software quality requirements (those defined by the stakeholders in a
process of requirements elicitation). Being able to relate static code checking rules to
software quality requirements allows for better understanding the interdependencies
between external and internal software quality (as quality requirements represent ex-
ternal quality and code checking rules are supposed to enforce internal quality).

To understand the relationships between quality requirements and code checking
rules, first look at the relationships between quality requirements and design decisions
[35]. These relationships are depicted on Fig.2. They are of “many-to-many” kind as
achieving the particular quality requirement can be affected by several design deci-
sions (e.g. the desired performance can be achieved with a help of creating a cache
with a specific size and going multithread) whereas a particular design decision can
affect achieving several quality requirements (e.g. the cache of the particular size can
help both performance and scalability). Also it is necessary to introduce the degrees
of affection as it can be either positive or negative. Some decisions can actually break
quality requirements as it is not always possible to satisfy all such requirements due to
implementation constraints and some compromise need to be found ([2] uses the term
“satisficing” referring to such requirements). For example, the design decision “a
cache database allowing up to 500 simultaneous users will be used by a cache man-
ager” can support the quality requirement “a response time under the load up to 500
users must not exceed 0.2 sec” while breaking the requirement “a response time under
the load up to 1500 users must not exceed 0.5 sec”.

Now it is possible to trace the code checking rules to the software quality require-
ments. As the specific quality requirement is affected by the specific design decision
either positively or negatively, it can be also affected the same way by all code check-
ing rules that enforce this design decision. So actually we have several groups of code
checking rules related to particular quality requirement – one group per degree of pos-
sible affection. In this paper we restrict ourselves to only two groups: supporting rules
and breaking rules. It is important to understand, however, that if the particular rule is
listed for the particular requirement as “breaking” it does not necessarily mean that its

96 V.A. Shekhovtsov, Y. Tomilko, and M.D. Godlevskiy

Fig. 2. Quality Requirement and Design Decision

implementation and enforcement necessary breaks this requirement: it only means
that it enforces breaking design decision so it has more chances to be harmful and
needs to be investigated more carefully.

Some code checking rules cannot be traced to quality requirements, in particular,
the rules driven by business environment i.e. related to accepted coding standards,
tools to be used etc. (corresponding to the executive decisions according to Kruch-
ten’s ontology [23]). This fact has to be captured in a way that makes it able for an
analyst to locate all the rules of this kind.

3.4 Code Checking Rules and Software Quality Characteristics

Software quality requirements refer to specific quality characteristics belonging to
particular quality model (such as e.g. defined by ISO/IEC 9126 quality model stan-
dard [18]). These models are usually defined as taxonomies of quality characteristics
with specific software metrics belonging to the lowest level. For example perform-
ance requirement “The response time for order processing must not exceed 0.5 sec”
(R1) refers to “response time” quality metric which belongs to “time behavior” mid-
dle-level characteristic and “efficiency” upper-level characteristic according to
ISO/IEC 9126 quality model specification.

As we have already connected code checking rules to software quality require-
ments, we can see that this connection contains information related to association be-
tween the rules and corresponding quality characteristics. For example, all the rules
related to R1 requirement can be associated with a “response time” metric and two
upper-level quality characteristics: “time behavior” and “efficiency”.

Connecting code checking rules to quality characteristics can be seen as rule catego-
rization, it does not involve parameterization of the rules (as in case of design decisions)
and does not include the degree of affection (there are no “rules breaking response time”
as “response time” in this case is only a category label). If such parameterization is un-
desirable, the analyst can even skip the detailed description of the relationship between
the rule and the design decision and instead only record the connection between the rule
and the corresponding quality characteristic.

Another quality-based code checking rule classification is proposed in [27]. Using
the tool proposed in that paper, it is possible to specify the code quality characteristic
and obtain all the rules associated with it. This approach, however, is restricted to
code quality characteristics that characterize internal software quality and can be di-
rectly associated with the rules. Our approach allows revealing the indirect connection
between code checking rules and external software quality characteristics. These two
classifications are actually complimentary and can be used alongside each other.

 Facilitating Reuse of Code Checking Rules in Static Code Analysis 97

4 A Conceptual Model of Code Checking Rules and Their
Rationale

After achieving understanding of the relations between the rules, design decisions,
and quality requirements we can describe how this information can be used by the
tool aimed at facilitating rule reuse. We propose to establish the rules repository
where the information about the available rules together with their rationale is stored
and make the tool access this repository. The conceptual model of code checking
rules making use of these relations can be used to establish a schema for this reposi-
tory. This model is shown on Fig.3; for brevity, we omitted most attributes and the
software project-related part of the model.

Fig. 3. A Conceptual Model of Code Checking Rules and Their Rationale

In this model, the relationships between the rules and their properties are of “many-
to-many” kind. It reveals the fact that we treat these properties as “tags”; as a result,
every rule can have sets of tags of different kind associated with it. This tagging ap-
proach allows for additional flexibility of expressing the rules; the repository based on
this model is supposed to offer better search capabilities.

Design decisions are also treated as tags as there can be many design decisions
connected to the particular code checking rule (probably originated from different
projects). The model allows the analyst to drill down the particular design decision to
see all the corresponding quality requirements, quality characteristics etc.

The model reflects the fact that not every programming language or static analysis
tool offer the support for the particular rule (see [34] for more formal treatment of this
issue). Some rules are specific for a particular language or framework (e.g. name-
space-related rules for .NET); some tools, on the other hand, do not offer capabilities
to implement specific categories of rules. To deal with this fact, the information about
the available language and tool support is stored with the rule. If the particular support
is missing, the analyst attempting to locate the rule in a repository should receive the
meaningful explanation of the problem. This approach also have an advantage of be-
ing flexible enough to incorporate future events when new language constructs are

98 V.A. Shekhovtsov, Y. Tomilko, and M.D. Godlevskiy

introduced to match the capabilities of other languages (e.g. Java generics) or the
tools start to support new features.

The model offers limited support for rule parameterization; actually it allows defin-
ing the set of parameter slots to transfer the information between the design decision
specification and the code checking rule (both treated as “black boxes” as stated ear-
lier). How this information can be used to actually parameterize the rule is left to the
implementation of the rule reuse support tool. In future, we plan to make use of lan-
guage- and tool-independent metamodel (similar to what is proposed in [34]) to de-
scribe the rule functionality, in this case, we will precisely define the support for rule
parameterization (treating the rule as a “white box”).

5 Rule Reuse

In this section, we look how the proposed notions of code checking rule rationale can
be used in practice to facilitate reuse. We start from the common list of reuse cases
and later introduce two possible rule reuse scenarios: top-down and bottom-up.

5.1 Rule Reuse Cases

Our model facilitates the reuse of the code checking rules for the following cases
(suppose we have established the special repository where the information about the
available rules and their rationale is registered; the structure of this information fol-
lows our conceptual model):

1. Implementing the registered design decision: it is possible to reuse all the corre-
sponding rules directly with all the parameter values (rare case of “copy-paste” re-
use), perform the corresponding parameterization, reject some rules, or use some
combination of these actions.

2. Applying the registered design pattern: the most frequent action is to reuse all the
corresponding rules with parameterization.

3. Encountering the registered quality requirement: it is possible to consider reusing
the corresponding supporting rules (the actual reuse will be probably postponed
until the actual design decisions are defined).

4. Investigating the consequences of supporting the particular registered quality char-
acteristic: all the code checking rules corresponding to this characteristic can be
considered for reuse and investigated in detail.

5. Working on a project which is similar to already-performed project: all the design
decisions of the past project can be examined together with their corresponding
code checking rules.

5.2 Rule Reuse Scenarios

Let us look at two typical scenarios for the reuse of the code checking rules: bottom-
up and top-down.

Top-down scenario is a straightforward one:

1. The analyst implements the design decision to support the particular quality re-
quirement. This decision has to be enforced with a set of code checking rules.

 Facilitating Reuse of Code Checking Rules in Static Code Analysis 99

2. The search for a quality requirement in a repository is performed. If it is not found
new requirement is registered, otherwise case 3 (see subsection 5.1) is followed;

3. The search for a design decision in a repository is performed. If it is not found new
decision is registered in a repository, otherwise case 1 is followed;

4. If on any of the previous stages the corresponding checking rules cannot be found,
they should be created and registered as well.

Bottom-up scenario should occur less frequently and is more difficult to follow:

1. The analyst works with some static code analysis tool on a particular application (it
can be an existing application being refactored etc.)

2. The set of errors and imperfect code fragments is found; some of them are believed
to have recurring character.

3. The synthesis of the code checking rules is performed for these errors; the informa-
tion about these rules is registered in a repository.

4. These rules are associated to the possible design decisions that could serve as their
rationale. This activity can involve non-trivial reasoning (in reverse engineering
sense) if design decisions have yet to be defined. In complicated cases, only the
categorization of the rules according to quality characteristics can be performed
(this is usually easier to do).

5. If quality requirements specification is defined for a system, design decisions can
be related to quality requirements.

Described reuse cases and scenarios can serve as parts of requirements specifications
for a reuse support tool with underlying code checking rules repository. This tool is
currently under development.

6 Related Work

We can classify the related work on rule reuse into two categories: (1) low-level
approaches addressing rule reuse on the code level (“white-box” reuse) and (2) higher-
level approaches investigating the place of such rules in a software process, their rela-
tions to the goals of the project, its quality requirements etc.; these approaches treat the
rules as “black boxes” to some degree (with possible parameterization). Most of the
work in this area falls into the first category. We found very few works investigating the
application rationale of the rules.

6.1 Source-Level (White-Box) Rule Reuse

Custom code analysis rules have yet to be extensively investigated by the research
community, most of the publications related to such rules are “how-to” (mostly on-
line) guides targeting particular industrial [5-7, 13] or research [16] tools; few at-
tempts to achieve reuse across tool or language boundaries are made. As a result, the
proposed solutions are actually rather low-level; they concentrate on specifics of rule
implementation for particular tools. An exception is a paper [7] where in addition to
targeting a Fortify tool an attempt is made to express the rules using high level (lan-
guage- and tool-agnostic) description language with defined grammar; no grammar,
however, is actually introduced in a paper.

100 V.A. Shekhovtsov, Y. Tomilko, and M.D. Godlevskiy

A common white-box approach for rule reuse is to start from building a conceptual
rule model and then instantiate this model in different contexts. Jackson and Rinard in
their roadmap for software analysis [19] emphasized the importance of this approach.
They suggested using special generic code representation as a model and build all the
code analysis activities on top of this model. The list of code models suitable to be
used in model-driven software analysis is rather extensive; it includes the schemas for
XML-based source code exchange formats such as GXL [15], srcML [4, 24], or
OOML [25], semantic code models such as ASG [8]. Detailed discussion related to
interrelationships between code models and code exchange formats is presented in
[21]. The specific case of using and adapting srcML for the support of code analysis
is discussed in [24].

An extensible meta-model-based framework to support the code analysis is de-
scribed in [34]. This approach provides the most extensive white-box reuse capabili-
ties. It formally defines the relationships between generic representation of the source
code, conditions specified on top of this representation (which can represent code
analysis rules), and specifics of particular languages and tools (front-ends for the
common metamodel). The definition of the common meta-model underlying the
framework reflects these issues, rules expressed via this metamodel can be easily re-
used across tool and language boundaries. The metamodel, however, does not provide
any means to aid capturing design-time rationale of rule application.

6.2 Code Quality and Black-Box Rule Reuse

An approach utilizing code quality models to assess open-source software projects
using extensive set of metrics was developed as a result of an SQO-OSS project [30].
Other approaches aimed at this goal are presented in [28, 32]. Such approaches are
limited to integrated quality assessment (i.e. they produce the values for software
quality attributes and an integrated value for overall product quality), they do not ad-
dress rules necessary to enforce quality. Their quality characteristics, however, can be
useful in reuse contexts as the rules can be associated with such characteristics using
an approach shown in subsection 3.4.

Connecting code checking rules to a quality model was proposed in [14, 27]; we
briefly discussed this work in the subsection 3.4. This connection is introduced as a
part of specific code analysis process called EMISQ. Both quality model and an
evaluation process are based on ISO 14598 and ISO 9126 standards. No model for
internal structure of the rules is proposed, instead, the available rules are stored into the
repository after classifying according to (1) code quality characteristics they help to
enforce and (2) available implementations (language and static analysis tool support).
The proposed tool aids the developer allowing fast filtering of the available set of rules
according to a quality characteristic they are supposed to enforce, required tool or lan-
guage support etc. The EMISQ approach is close to our technique with respect to ad-
mitting the need for capturing the connections from the rules back to the system goals
(which can be seen [2] as corresponding to software quality requirements). Actual im-
plementation of this connection, however, is not presented in a paper and its use to
facilitate rule reuse is not investigated. Also this approach does not take into account
design decisions and patterns. In fact, to aid rule reuse, the developer is supposed to
pick context-relevant code quality characteristic manually and choose the appropriate
rules without any specific connection to the past development experience.

 Facilitating Reuse of Code Checking Rules in Static Code Analysis 101

7 Conclusions and Future Work

In this paper, we proposed an approach for revealing the rationale behind the applica-
tion of code checking rules in static code analysis. We stated that these rules can be
related to design decisions and patterns, quality requirements and quality characteris-
tics. We presented a conceptual model for the code checking rules and their rationale;
this model can be used to establish a schema for the rule repository underlying reuse
support tools. The proposed solution facilitates rule reuse in recurring development
contexts by allowing the analyst to look at all the rules related to the particular context.

In future, we plan to implement a tool support for our approach. Prospective tool
will offer a repository for code checking rules organized in correspondence with the
proposed conceptual model allowing analysts to perform queries for available rules
according to different reuse cases and scenarios. Another direction of research is tran-
sition to the “white box” representations of the code checking rules (according to
[34]) and the design decisions (e.g. according to their UML profile [35]).

References

1. Chess, B., West, J.: Secure Programming with Static Analysis. Addison-Wesley, Reading
(2007)

2. Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-Functional Requirements in Software
Engineering. Kluwer Academic Publishers, Dordrecht (1999)

3. Code Query Language 1.8 Specification (accessed January 11, 2008),
 http://www.ndepend.com/CQL.htm

4. Collard, M.L., Maletic, J.I., Marcus, A.: Supporting Document and Data Views of Source
Code. In: Proc. DocEng 2002. ACM Press, New York (2002)

5. Copeland, T.: Custom PMD Rules. OnJava.com (2003) (accessed January 11, 2008),
 http://www.onjava.com/pub/a/onjava/2003/04/09/pmd_rules.html

6. Create Custom FxCop Rules (accessed January 11, 2008),
 http://www.thescarms.com/dotnet/fxcop1.aspx

7. Dalci, E., Steven, J.: A Framework for Creating Custom Rules for Static Analysis Tools.
In: Proc. Static Analysis Summit, pp. 49–54. Information Technology Laboratory, NIST
(2006)

8. DATRIX Abstract Semantic Graph Reference Manual, version 1.4. Bell Canada (2000)
9. Firesmith, D.: Using Quality Models to Engineer Quality Requirements. Journal of Object

Technology 2, 67–75 (2003)
10. Fliedl, G., Kop, C., Mayerthaler, W., Mayr, H.C., Winkler, C.: The NIBA Approach to

Quantity Settings and Conceptual Predesign. In: Proc. NLDB 2001. LNI, vol. P-3, pp.
211–214. GI (2002)

11. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns. Elements of reusable ob-
ject-oriented software. Addison-Wesley, Reading (1995)

12. Glinz, M.: Rethinking the Notion of Non-Functional Requirements. In: Proc. Third World
Congress for Software Quality (3WCSQ 2005), Munich, vol. II, pp. 55–64 (2005)

13. Grindstaff, C.: FindBugs, Part 2: Writing custom detectors. IBM Developer Works (2004)
(accessed January 11, 2008),

 http://www.ibm.com/developerworks/library/j-findbug2

102 V.A. Shekhovtsov, Y. Tomilko, and M.D. Godlevskiy

14. Gruber, H., Körner, C., Plösch, R., Schiffer, S.: Tool Support for ISO 14598 based code
quality assessments. In: Proc. QUATIC 2007. IEEE CS Press, Los Alamitos (2007)

15. Holt, R.C., Winter, A., Schürr, A.: GXL: Toward a Standard Exchange Format. In: Proc.
WCRE 2000, pp. 162–171 (2000)

16. Holzmann, G.J.: Static Source Code Checking for User-Defined Properties. In: Proc. IDPT
2002. Society for Design and Process Science (2002)

17. IEEE Standard for Software Reviews. IEEE Std 1028-1997. IEEE (1997)
18. ISO/IEC 9126-1, Software Engineering – Product Quality – Part 1:Quality model. ISO

(2001)
19. Jackson, D., Rinard, M.: Software Analysis: A Roadmap. In: Proc. Conf. on The future of

Software engineering. ACM Press, New York (2000)
20. Jansen, A., Bosch, J.: Software Architecture as a Set of Architectural Design Decisions. In:

Proc. WICSA 2005, pp. 109–120. IEEE CS Press, Los Alamitos (2005)
21. Jin, D.: Exchange of software representations among reverse engineering tools. Technical

Report. Department of Computing and Information Science, Queen’s University, King-
ston, Canada (2001)

22. Kruchten, P.: The Rational Unified Process - An Introduction. Addison-Wesley, Reading
(1995)

23. Kruchten, P.: An Ontology of Architectural Design Decisions in Software-Intensive Sys-
tems. In: 2nd Groningen Workshop on Software Variability Management (2004)

24. Maletic, J.I., Collard, M.L., Kagdi, H.: Leveraging XML Technologies in Developing Pro-
gram Analysis Tools. In: Proc. ACSE 2004, pp. 80–85. The IEE Publishers (2004)

25. Mamas, E., Kontogiannis, K.: Towards Portable Source Code Representations Using
XML. In: Proc. WCRE 2000, pp. 172–182. IEEE CS Press, Los Alamitos (2000)

26. Mayr, H.C., Kop, C.: Conceptual Predesign - Bridging the Gap between Requirements and
Conceptual Design. In: Proc. ICRE 1998, pp. 90–100. IEEE CS Press, Los Alamitos
(1998)

27. Plösch, R., Gruber, H., Hentschel, A., Körner, C., Pomberger, G., Schiffer, S., Saft, M.,
Storck, S.: The EMISQ Method - Expert Based Evaluation of Internal Software Quality.
In: Proc. 3rd IEEE Systems and Software Week. IEEE CS Press, Los Alamitos (2007)

28. Rentrop, J.: Software Metrics as Benchmarks for Source Code Quality of Software Sys-
tems. Vrije Universiteit, Amsterdam (2006)

29. Rutar, N., Almazan, C.B., Foster, J.S.: A Comparison of Bug Finding Tools for Java. In:
Proc. ISSRE 2004, pp. 245–256. IEEE CS Press, Los Alamitos (2004)

30. Samoladas, I., Gousios, G., Spinellis, D., Stamelos, I.: The SQO-OSS quality model:
measurement based open source software evaluation. In: Proc. OSS 2008, pp. 237–248
(2008)

31. Spinellis, D.: Bug Busters. IEEE Software 23, 92–93 (2006)
32. Stamelos, I., Angelis, L., Oikonomou, A., Bleris, G.L.: Code quality analysis in open

source software development. Info. Systems J. 12, 43–60 (2002)
33. Stellman, A., Greene, J.: Applied Software Project Management. O’Reilly, Sebastopol

(2005)
34. Strein, D., Lincke, R., Lundberg, J., Löwe, W.: An Extensible Meta-Model for Program

Analysis. IEEE Transactions on Software Engineering 33, 592–607 (2007)
35. Zhu, L., Gorton, I.: UML Profiles for Design Decisions and Non-Functional Requirements.

In: Proc. SHARK 2007. IEEE CS Press, Los Alamitos (2007)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

