
V.Shekhovtsov, H.C.Mayr, C.Kop: Harmonizing the Quality View of Stakeholders, Chapter 3. In:
Mistrik, I., Bahsoon, R., Eeles, R., Roshandel, R., Stal, M. (eds.): Relating System Quality and
Software Architecture. Morgan-Kaufmann (Elsevier imprint), 2014, pp. 41-73

CHAPTER

Harmonizing the Quality
View of Stakeholders 3

Vladimir A. Shekhovtsov, Heinrich C. Mayr, and Christian Kop
Alpen-Adria-Universität Klagenfurt, Klagenfurt, Austria

INTRODUCTION

A software development process typically has many stakeholders: the prospective end users, business

actors, architecture and software designers, software developers and integrators, database engineers,

test engineers, and others. All these should agree at an early stage on the same—or close enough—view

of quality to make a software development process successful. Only then quality requirements can be

determined reliably, implemented during software development, and thus met by the resulting system.

Failure to establish an appropriate common understanding of the prospective system’s quality leads

to the problems in the late stages of the development lifecycle that are very difficult and expensive to

fix. In particular, the end users’ opinions and expectations on software quality tend to be neglected or at

least handled incompletely; as a result, the understanding of system quality becomes biased toward the

view of the software developers—a problem known as “the inmates are running the asylum” (Cooper,

2004). This is supported by evidence of the practice of development: For example, a study of the current

practice of the Quality Aware Software Engineering (QuASE) partner companies revealed that in the

early stages of their software lifecycles, mainly usability is addressed, including handling performance

and other issues is often postponed until system deployment. Clearly, that approach comes with neg-

ative consequences for all parties, because fixing the problems with unsatisfied stakeholder expecta-

tions on the late stages of the software process is difficult and expensive and may even lead to the

failure of the whole project (Walia and Carver, 2009; Westland, 2002).

Thus it is necessary to harmonize the different stakeholder views of quality from the beginning

throughout the complete development process, addressing requirements engineering via architectural

design, specification to implementation, test, and rollout. This applies for both traditional structured

and lightweight agile development processes.

For this purpose, an appropriate communication channel between the stakeholders has to be estab-

lished, allowing them to discuss all relevant quality issues from their respective views.

This chapter presents a conceptualization of quality view harmonization and summarizes the related

state of the art in research and development. In detail, we identify the dimensions of knowledge that are

relevant for view harmonization, propose a set of concepts for each dimension, and align these where

possible with concepts offered by other approaches. Our concepts will be grounded in the Unified

Foundational Ontology (UFO) (Guizzardi, 2005) and materialized by applying them to the empirical

data in a given software development venture. Thus, our conceptualization is intended to be a key

41

constituent of a common ontology of stakeholder perception and assessment (QuOntology). This ontol-

ogy can be used to support the organization of the interaction process following the ontology-based

software engineering paradigm.

The following dimensions of quality view harmonization will be addressed:

1. The quality of system under development (SUD) itself and the related aspects as well as their

interrelations, in particular, the notion of quality assessment and the concepts utilized in the quality

assessment activities.

2. The knowledge about the various stakeholders, the differences in their perception of quality, and the

amount of knowledge about the software quality issues.

3. The knowledge about the activities of the harmonization process and the capabilities of the process

participants needed for performing these activities.

The harmonization process will be dealt with on three levels:

1. Terminology harmonization: The stakeholders seek an agreement on the common quality-related

terminology, the language constructs used for expressing expectations and opinions on quality.

These can emerge in natural, domain-specific, or even formal language. The purpose of

harmonization is to make them understandable to all stakeholders of the process.

2. View harmonization: The stakeholders seek an agreement on the sets of objects and the types of

their qualities they are interested in, as well as the procedures of assessment.

3. Quality harmonization: The stakeholders seek an agreement on the evaluation schemes and the

particular qualities they are interested in.

In this chapter, we concentrate on the view and quality harmonization.

Theconcepts presentedhere are consolidatedbya study that is part of theongoingQuASEproject.We

carried out detailed interviewswith variousmembers of the four industrialQuASEpartners. The answers

have been transcribed using the basic techniques of coding and conceptualization stages of the grounded

theory (Adolph et al., 2011; Coleman and O’Connor, 2008). The obtained evidence then was combined

with our own experience andwith the body of knowledge inherent in the software quality standards such

as ISO/IEC25010 (ISO, 2011).Adetailed descriptionof this empirical study and anoutline of theupcom-

ing industrial application of the proposed conceptualization are presented in Section 3.4.

The chapter is structured as follows: In Section 3.1, we present the concepts we adopt from the UFO

for grounding our approach. Section 3.2 introduces the conceptualization of quality assessments to be

used as a foundation for the conceptualization of the harmonization process that is discussed in

Section 3.3 on the three aforementioned levels supplemented with a running example of instantiating

the proposed concepts. In Section 3.4, we describe the conducted empirical study and show how to

apply the proposed concepts in practice. The chapter closes with a conclusion and directions for future

research.

3.1 ADOPTED CONCEPTS OF THE UFO
We follow a multilevel approach to conceptualization where upper-level (more generic) concepts form

the foundation for the concepts belonging to the lower levels. Such frameworks are called foundational
ontologies in the literature. We start with making specific foundational choices, the most important

42 CHAPTER 3 Harmonizing the Quality View of Stakeholders

among them being the selection of the foundational framework providing upper-level generic concepts.

Such ontologies define a set of basic concepts that reflect the particular world view. They can be

extended and reused by the lower-level conceptual frameworks.

There are several foundational ontologies providing the concepts that could serve as a fundament

for our venture: GFO (Herre, 2010), DOLCE (Masolo et al., 2003), and UFO (Guizzardi, 2005). For our

purposes, we choose to adapt UFO; the reasons of that choice will be discussed at the end of this section.

Figure 3.1 depicts the subset of adapted UFO concepts that are useful for our conceptualization.

The right-hand side represents the type level; according to extensional semantics, each of these con-

cepts spans a set of instances that materialize the respectful type. The left-hand side represents the

instance level and, as result, conceptualizes the materialization of the type level.

The root of the relevant UFO concept hierarchy is Thing,which generalizes the concepts Individual,
Type, and Abstract. Individuals are Things that exist in the real world and possess a unique identity;

Types can be seen as “templates of features,” which may be materialized in a number of Individuals.

FIGURE 3.1

Fragment of the Unified Foundational Ontology.

Adapted from Guizzardi and Zamborlini (2013).

433.1 Adopted Concepts of the UFO

In other words, they are instantiated by Individuals; Abstracts are not materialized in the real world and

therefore cannot be instantiated.

Individuals are specialized to Endurants or Events. Endurants are Individuals that exist, for a certain
period, continuously in time. They are further categorized into Entities and Tropes: Entities are Indi-
viduals that may exist on their own. In contrast to this, Tropes can only exist in dependence with their

“bearers,” which are (instances of) Things. Entities are materializations (instance_of) Entity Types;

Tropes are materializations of Trope Types. Following the object-oriented paradigm, Entities corre-

sponds to objects, Tropes to attributes, and Entity Types to classes.

Relator is a special kind of Trope that defines a connection between two or more Individuals. As an

example, think of a person assessing a particular quality. Following the object-oriented paradigm, Rela-

tors correspond to associations. One could question if the UFO explanation as a specialization of Trope

is appropriate. In our opinion, it would be preferable to define Relators more generally as Entities; inter
alia, this would allow for “objectified associations.”

Roles are Entity Types associated to Entities where this association may change in time. In other

words, the Individuals instantiating Roles are determined by their relationships (via Relators) to other

Individuals.

Events are Individuals that happen at a particular point of time. Events are related to States that they
initiate or terminate: Every Event is connected to its pre-State and post-State. Actions and Activities are
performed by Individuals in a particular role by executing a (somehow abstractly defined) operation.

As such, they represent reactions of a particular Role to a particular (triggering) Event. The difference

between Actions and Activities is that the former are considered “timeless” (i.e., are performed in no or

not interesting time), whereas the latter are supposed or expected to have a duration. Note the non-

adapted UFO does not provide such strong orthogonal distinction between Event and State (no time

vs. time), continued in the distinction between actions and Activities. However, for our purposes,

we prefer such a clear separation of concepts.

The UFO conceptualization of quality is based on the theory of conceptual spaces by Gärdenfors

(2000). This theory deals with the relationship between specific properties and the corresponding qual-

ities as associated by human cognition. Within this context, UFO introduces the concept of Property
Type (e.g., “color” or “response time”) and associates it with a Property Structure consisting of Prop-
erty Dimensions that describe the Individuals (Properties) of this Type (Property is a specialization of
Trope inherent in Individual). Such structures may be simple; for example, the time dimension (asso-

ciated with the Property Type “response time”) defines a set of time values (i.e., “1 ms,” “2 s,” “1 min”)

because humans are accustomed to perceiving time in this way.

In other cases, it might be insufficient to use just such simple one-dimensional structures.

For example, when dealing with a Property “color,” we might want not only to use simple values

like “red,” “green” as perceived by humans. We rather might wish to represent colors by three values:

hue (again possibly consisting of three RGB values), saturation, and brightness. As a result, for repre-

senting color, it is necessary to use a three-dimensional structure: a Property Domain represented by

the set of defined triples (h, s, b). A collection of Property Domains forms, according to Gärdenfors, a

conceptual space.

Property Structures are associated with Property Types; they define the concrete shape of the Indi-

viduals of these Property Types, otherwise known as the Properties. Property Types conceptualize

quality characteristics and the relevant metrics as defined by such standards as ISO/IEC 9126 (ISO,

2001, 2003a,b, 2004) and ISO/IEC 25010 (ISO, 2011).

44 CHAPTER 3 Harmonizing the Quality View of Stakeholders

A specific subset of UFO (UFO-C) (Guizzardi et al., 2008) is devoted to conceptualizing the human

social context. Among these concepts, we limited ourselves to adopting the concept of Agent describing
active Entities that can respond to Events by performing Actions or Activities; passive Entities that

cannot respond to Events are Objects. We further distinguish Human Agents and Organizations.
UFO-C distinguishesMental Trope as a subtype of Trope. Mental Tropes are related to Human Agents

and reflect their capacity to respond to situations emerging in reality. In this chapter, we are interested

in one category of such Mental Tropes, namely, Intentions. Intentions can be understood as “internal

commitments” of the Agents to do something according to their will and, eventually, to start Activities

or Actions.

3.1.1 Selection of the Foundational Ontology
We considered UFO, DOLCE, and GFO as the alternatives for the choice of the foundational ontology.

Although all these ontologies provide the conceptual notions suitable for representing qualities of soft-

ware artifacts and the process of their assessment by quality subjects, they apply different approaches to

deal with these notions:

1. DOLCE treats all qualities as particulars (actually, this ontology positions itself as the “ontology of

particulars"). There is no notion corresponding to the quality characteristic as understood by

industry standards as a type (template) for the particular qualities, it also lacks concepts

representing human social contexts.

2. GFO is an ontology that also lacks components related to human social context and the detailed

representation of quality-related concepts.

3. UFO provides both particulars (Qualities) and generics (Quality Types); it also includes concepts

related to quality and human social contexts.

As a result, we can justify the selection of UFO by the fact that it provides the most complete set of

foundational concepts related to the representation of object and system qualities and the classification

of such qualities.

As an alternative to using foundational ontology as the base for the presented set of concepts, it is

possible to consider using meta-modeling approach such as SPEM (OMG, 2008) or ISO/IEC 24744

(ISO, 2007) targeting software development processes. These solutions, however, also do not provide

concepts related to the representation of object and system qualities and the classification of such

qualities.

3.2 ASSESSMENT AND RELATED CONCEPTS
Informally, quality assessment consists of associating Qualities (that conceptualize the assessment

results) to Properties; this induces a ranking if the set of instances of the respective Quality Type is

partially or fully ordered. Such ranking may be implicit if no other comparison object is explicitly

mentioned.

Quality assessment is done by the Quality Subjects (stakeholders) according to their particular

viewpoints, appraisals, preferences, and priorities—and thus requires a subsequent harmonization.

As a consequence, quality assessment can be seen and formalized from two levels: the specification

453.2 Assessment and Related Concepts

level (dealing with specification of assessments) and the execution level (dealing with the execution of
assessments).,Conceptualizing the specification level means to describe the way of performing assess-

ments and the capabilities of the subjects who perform the assessments; conceptualizing the execution

level means to capture the relevant aspects of assessment execution along its specification, including

the assessed values, the results of the assessments, the time needed and consumed for assessments.

In this section, we will describe the relevant concepts for both levels.

3.2.1 Specification-level concepts
Figure 3.2 depicts the specification-level concepts; our extensions to UFO are shaded in gray.

We start by introducing the concepts that reflect the human way to assess Properties, namely to

associate Quality Types (e.g., “color quality” or “response time quality”) with Property Types and

to assign instances (“Qualities,” e.g., “good,” “bad,” “interesting”) of the former to the latter. Note that

in the case of Property Structures, such associations and assignments may occur on different levels and

include aggregations.

Software Artifacts are Objects that are produced in a software process; their qualities are of interest
to the involved Quality Subjects. Quality Assessment Functions conceptualize the association of Qual-
ities (or combinations of those) to Software Artifacts. More specifically, Qualities are assigned to the

related Properties of the given artifact. This leads to the following definition:

Definition 1: Let SA be a Software Artifact, PTSA the set of Property Types, instances of which are

inherent in (components of) SA. For pt2PTSA, let Ipt be the set of instances of pt and Iqt the set of

instances of the Quality Type qt associated with pt. Then a Property-Level Quality Assessment Func-
tion is formally defined as fSApt: Ipt! Iqt.

Note that, depending on the related Quality Structure definition, Qualities may be scalar as well as

structured. In a concrete application, the Quality Assessment function may be both

• ad hoc defined by a Quality Subject in such a manner that he/she directly assigns Qualities to the

Properties at hand.

FIGURE 3.2

Specification-level concepts for Property-Level Assessments.

46 CHAPTER 3 Harmonizing the Quality View of Stakeholders

• predefined by means of a functional definition that can be used to calculate a concrete value

assignment. As an example, consider Figure 3.3, which depicts a tabular definition of a Quality

Assessment Function that associates the Qualities “Good,” “Satisfying,” and “Bad” with Quality

Type “response_time_quality” depending on the current Individual of Property Type “response

time.”

Artifact-Level Quality Assessment Functions associate Qualities with Artifacts based on (sub)sets of

their Properties. Such function can be defined as fSA PT0
SA
: Iptjpt2 PT0

SA � PTSA

� �! ISA, where ISA is

the set of instances of the Quality Type associated with the Entity Type of the particular Software Arti-

fact. Clearly, the SUD itself is such an artifact.

As depicted on Figure 3.4, it is possible to distinguish:

• System-Level Qualities,which belong to the whole system and cannot be derived from the Qualities

of its parts (e.g., its total cost).

FIGURE 3.3

Tabular definition of a Quality Assessment Function.

FIGURE 3.4

The relationships between the qualities of the system and the qualities of its parts.

473.2 Assessment and Related Concepts

• Derived Qualities, which depend on the Qualities of the parts of the system (e.g., the value of

latency depends on the Quality Type related to the particular component such as hardware and

software performance).

• Aggregated Qualities (e.g., the user-interface-related Qualities of the whole system could be

considered as the aggregated Qualities of its user-interface-related components).

All these categories of Qualities need to be taken into account in the System-Level Assessment

Function.

In general, because Software Artifacts are Individuals that can be part of other Individuals, we can

reduce the System-Level and Artifact-Level Functions to the generic version of the Artifact-Level

Function, which could perform aggregation over the parts of their corresponding Software Artifact.

Stakeholders are Human Agents participating in the software development process. Quality Sub-

jects are Stakeholders capable of performingQuality Assessments and thus parties in the harmonization

process. They apply Quality Assessment Functions driven by their Individual Intentions.

Not all Stakeholders are necessarily Quality Subjects. For example, if we consider the Stakeholder

instances “hardware supplier,” “developer,” and “end user” and assume that hardware supplier has

delivered the best of the market so no optimization of hardware is possible, in case of a performance

issue in the SUD, the Quality Subjects who have to harmonize their views are “developer” and “end

user,” whereas “hardware supplier” can be filtered out in this situation. If dealing with quality issues

related to the response time of data accesses, then the involved Quality Subjects will be “end user,”

“database backend developer,” and “database supplier,” whereas “UI developer” might be filtered

out. On the other hand, while doing a usability check, “UI developer” and “end user” will more likely

serve as Quality Subjects.

Quality-Related Intentions characterize the Intentions of Quality Subjects when performing Quality

Assessment. Given that different Quality Subjects may have different attitudes toward performing the

Assessment, we need to distinguish between several categories of Quality-Related Intentions:

• Interest-Related Quality Intention: The Quality Subject is interested in the Assessment of a

particular Software Artifact or of some or all of its Properties.

• Force-Related Quality Intention: The Quality Subject is forced (e.g., by the organizational duties)

to perform the Assessment but probably has no interest in doing this.

• Knowledge-Related Quality Intention: The Quality Subject has the knowledge needed for

performing the Assessment; he/she thus could be consulted as an expert.

• Viewpoint-Related Quality Intention: The Quality Subject represents a specific user group

(viewpoint). As an example, an IT person assesses the Software Artifacts to be used by IT persons.

Quality-Related Intentions are not mutually exclusive: There could be several connections between a

Quality Subject and a Software Artifact, each characterized by a different Quality-Related Intention.

We now proceed to conceptualize the Quality Views of Quality Subjects by first introducing View-
Defining Sets (VDS) on the Artifact and Property Type Level, respectively. This will lead us to those

Properties to which the Quality Subjects might want to apply assessment functions. For that purpose

assume the following:

• AUoD is the set of all Software Artifacts related to the given UoD.

• Au�AUoD is the set of Software Artifacts that are connected to the Quality Subject u by means of

Quality Intentions (Subject-u-related Artifacts).

48 CHAPTER 3 Harmonizing the Quality View of Stakeholders

• PTa is the set of all Property Types defined for the Software Artifact a2Au.

• PTau�PTa is the set of Subject-u-related Property Types of a2Au.

• Pu is the set of all Quality-Related Intentions of u.
• VDSi�Au is the Artifact-Level “View-Defining Set”¼ set of Software Artifacts related to Intention

i2Pu.

• VDSia�PTau is the Property-Level “View-Defining Set”¼ (sub)set of Property Types associated

with Software Artifact and related to the Intention i.

Then the Quality View of a Quality Subject u for a particular Intention i may be defined as the total of

Quality Assessment Functions that this Quality Subject applies to the elements of the VDS for Intention i:

QVi ¼ fatjt2VDSia,a2VDSif g[faVDSia ja2VDSif g
A Quality Subject may have different Quality Views at the same time connected to his/her different

Quality-Related Intentions; for example, a developer could deal with different Business Stakeholders.

In this situation, he/she can utilize a specific Quality View for the purpose of communication with

every Stakeholder.

3.2.2 Execution-level concepts
After conceptualizing what and how it is assessed, we now have to define the concepts that will enable

us to capture the process of performing the assessments. The schema illustrating these concepts is

shown on Figure 3.5.

The key execution-level quality-related concept is Quality Assessment. Again we differentiate

between Software Artifact and Property-Type Level. On the latter, Assessment is viewed as an Activity

depending on the following Individuals:

FIGURE 3.5

Execution-level concepts for Property-Type Level Assessment.

493.2 Assessment and Related Concepts

1. The Property of the particular Software Artifact to be considered for assessment.

2. The Quality Subject performing the assessment.

3. The Quality that is assigned to the particular Property as a result of assessment.

Artifact-Level Assessment is viewed as the Activity depending on the following Individuals:

1. The Software Artifact to be assessed.

2. The (sub)set of its Properties to be considered for assessment.

3. The Quality Subject performing the assessment.

4. The Quality that is assigned to the particular Artifact as a result of assessment.

To establish the connection between execution-level and specification-level concepts, Quality Assess-

ment Functions are used to perform particular assessments. The Property-Level Quality Assessment

operation takes a particular Property p2 Ipt, applies the corresponding Quality Assessment Function

fSApt, thus associating the Quality q2 Iqt to Property p according the specification of fSApt.

The Artifact-Level Quality Assessment operation takes a particular version of SA represented by a

(sub)set of its Properties, PSA PT0
SA
¼ pjp2 Ipt,pt2 PT0

SA � PTSA

� �
, and applies the corresponding Qual-

ity Assessment Function fSA PT0
SA
.

3.2.3 State of the Art: Addressing basic quality-related concepts
We published a detailed literature review of the quality conceptualization techniques in Shekhovtsov

(2011). Among these techniques, following Aßmann and Zschaler (2006) and Pastor and Molina

(2007), we distinguish:

There are survey papers devoted tomodel-based approaches,which conceptualize software quality
in a solution space (prescriptively defining the system-to-be) under the “closed-world” assumption

(everythingnot explicitly described is assumednonexistent) (Carvallo, 2005;Deissenboecket al., 2009).

Ontology-based approaches conceptualize software quality in a problem space (describing the real-

world problem domain addressed by the SUD) under the “open-world” assumption (everything not

explicitly described is assumed unknown).

In practice, the dividing line between these two categories of approaches is difficult to define,

because the descriptions of the approaches do not clearly distinguish between the problem space

and the solution space. As a result, the term “quality model” often refers to ontology-based solutions.

Following Shekhovtsov (2011) and Wagner and Deissenboeck (2007), we further classify these

techniques according to their abstraction level; we consider abstraction levels for model-based and

ontology-based approaches separately.

For quality models, we define the abstraction level according to the notion of a modeling meta-

pyramid (Aßmann and Zschaler, 2006): The model on a particular level defines the conceptualization

of the language that is used to define the models on the level below. In other words, it acts as a meta-

model. Here, we restrict ourselves to only two levels:

1. Model level: For the models of some phenomenon; in our case a quality model directly describes the

phenomenon of quality as used in a system-to-be; examples are taxonomies of quality

characteristics (fixed model techniques; Fenton and Pfleeger (1997)) that are described by example

without meta-information (e.g., early techniques, Boehm et al., 1978; McCall et al., 1977,

standards, ISO, 2001, 2011). Such approaches are criticized due to the arbitrary choice of quality

characteristics (Deissenboeck et al., 2009; Kitchenham and Pfleeger, 1996).

50 CHAPTER 3 Harmonizing the Quality View of Stakeholders

2. Meta-model level: For the meta-models (models of languages used for describing the models);

in our case a quality meta-model is used to define quality models; we further distinguish

implicit and explicit quality meta-models. The former are introduced “bottom-up,” via custom
or mixed model QMT (Fenton and Pfleeger, 1997) and allow modification of the model

structure; they often omit quality characteristics from the model descriptions (Dromey, 1996; IEEE,

1998). The latter are introduced “top-down” with the explicit purpose of describing the set of

possible quality models (Burgués et al., 2005; Cachero et al., 2007; Jureta et al., 2009b; Susi et al.,

2005). Industry examples are UML quality profiles adding support for new modeling concepts

to UML via an extension of the UMLmeta-model (Aagedal et al., 2004; Apvrille et al., 2004; OMG,

2003; Rodrı́guez et al., 2006).

For ontological approaches, the abstraction level refers to the concepts being described, not the descrip-
tion approach (all ontologies of different levels can be defined using the same ontology language).

Before elaborating the description of these two levels, it is necessary to mention that basic concepts

for representing qualities could be found in most foundational ontologies (we have already discussed

this issue in Section 3.2). Different approaches to the definition of concepts for representing properties,

qualities, and their perception in the human mind are surveyed in Masolo and Borgo(2005).

The two ontological levels based on foundational ontologies are as follows:

1. The quality upper ontologies level covers the techniques describing the concepts (universals) for

concrete quality ontologies (e.g., by defining concepts for quality characteristic, quality metric,

describing their relationships) (Bertoa et al., 2006; Falbo et al., 2002; Jureta et al., 2009a; Magoutas

et al., 2007). Some of these techniques are based on the so-called foundational ontologies; in

particular, UFO is applied for the ontologies of software requirement management (de Almeida

Falbo and Nardi, 2008), software measurement (Barcellos et al., 2010), and agent-oriented software

development (Guizzardi and Wagner, 2005);

2. The quality ontologies level covers the techniques directly describing the phenomenon of

quality (via particulars; with concepts for performance, reliability, etc.) (Al Balushi et al.,

2007; Boehm and In, 1996).

3.3 THE HARMONIZATION PROCESS
3.3.1 Quality Subjects’ positions in the harmonization process
Prior to elaborating the conceptualization of the harmonization process, we introduce the following

concepts describing the positions of Quality Subjects within the harmonization process (Figure 3.6):

1. The Organizational Side is an Organization participating in the software process.

2. The Process Side is a Role possessed by a Quality Subject with reference to his/her affiliation with
the Organizational Side.

We define two concretizations of the Organizational Side:

1. The Business Side is the Organizational Side ordering the software product (e.g., the customer

company).

513.3 The Harmonization Process

2. The IT Side is the Organizational Side responsible for developing this product (e.g., the developing
company).

The concretizations of the Organizational Side define the concretizations of the Process Side role:

1. The Business Stakeholder role is a Process Side that is taken by a Quality Subject (e.g., a person)

affiliated with the responsible Business Side.

2. TheDeveloper role is a Process Side taken by a Quality Subject (e.g., a person) affiliated with the IT
Side.

In some projects, there could be additional roles extending the Process Side.

3.3.2 Process definition and harmonization levels
We define aHarmonization Process as the entirety of interactions between involved Process Sides tar-
geting at a set of Terminology Means, Quality Views, and Qualities that satisfies all these Process
Sides.

Such processes affect the following harmonization levels (which also could be seen as process

stages):

1. Terminology Harmonization: The sides agree on the terminology used to describe quality-related

concepts.

2. View Harmonization: The sides align their Quality Views.

3. Quality Harmonization: The sides agree on the Qualities for the particular version of the system

or its component.

These activities are supposed to be enacted with different frequencies. In particular, it could be suffi-

cient to harmonize terminology at the beginning of a particular software development project, whereas

Quality harmonization, for example, should be enacted on every change in the system implementation

that affects the current SUD state.

As mentioned in the section “Introduction,” we restrict ourselves to the detailed description

of the View and Quality harmonization activities; Terminology Harmonization is left to a separate

publication.

FIGURE 3.6

Process Side role and its related concepts.

52 CHAPTER 3 Harmonizing the Quality View of Stakeholders

3.3.3 Running example
For a better understandability of our description, we introduce first a running example for the harmo-

nization process to be conceptualized that involves, for reasons of simplicity, only two persons and

relates to one particular software artifact:

1. David (the Developer) and Sean (the Business Stakeholder) negotiated the quality of the software

component called Financial Report Generator (FRG).

2. Initially, David considered also the Database Subsystem (DBS) and the Hardware Subsystem

(HWS) as relevant artifacts, because the quality of FRG depended on their characteristics. Sean,

however, only dealt with FRG because he did not see the other components of the system. As a

result of negotiation, David agreed not to discuss DBS and HWS with Sean.

3. David was going to deal with the metrics for FRG internal and external quality characteristics

(according to ISO/IEC 9126-2, ISO, 2003a, and ISO/IEC 9126-3, ISO, 2003b), in particular I/O

utilization, memory utilization, and response time. Sean restricted himself to quality in use metrics

(according to ISO/IEC 9126-4; ISO, 2004), namely FRG task efficiency. After negotiation, David

agreed not to discuss I/O utilization and memory utilization; whereas Sean agreed to discuss

response time instead of task efficiency because this external quality metric was understandable to

him. As a result, the parties agreed to consider only FRG response time.

4. Before discussing FRG response time, the sides agreed that they will assess it using the

following scale: {very bad, bad, satisfactory, good, very good} ordered from “very bad” to

“very good.” Also, Sean felt that very good response time would be immediately satisfactory

to him so that he would accept FRG immediately; on the other hand, very bad would lead him

to stop dealing with David; all other assessment results were negotiable to him.

5. Initially, David produced three FRG prototypes (starting from 1 ms response time) until he felt that

the response time of 0.25 ms was good. Then he showed the prototype to Sean, who did not like it

and felt this response time was bad.

6. As a result, David reconsidered his judgment and changed it from good to satisfactory. Then he

continued producing prototypes until he obtained a response time of 0.1 ms, which he considered

good even taking new insights into account. Then he again showed the prototype to Sean; this time

Sean also felt the response time was good.

7. As a result, the parties agreed on FRG response time of 0.1 ms.

3.3.4 View harmonization process
At this level, the parties agree on their views on quality; we refer to the process of such agreement as

View Harmonization Process.

In the treatment of this and the subsequent process, we assume that the parties share a common

Quality-Related Intention of communicating with each other (omitting this Intention from the nota-

tional representations.)

3.3.4.1 Stage 1: Harmonizing artifacts
The sides agree on the set of software artifacts to be included in VDSH, forming the harmonized

Artifact-Level VDS. Suppose that the external quality-related Properties of the Software Artifact

included in VDSBS (i.e., the Developer’s view) depend on internal quality-related Properties of other

Software Artifacts included in VDSD. Then, in a process of negotiation, the Developer could

533.3 The Harmonization Process

1. Agree to discuss only the Software Artifact included in VDSBS, or not to include other Software

Artifacts from VDSD into VDSH.

2. Propose that the other party to discuss external quality-related Property Types related to Software

Artifacts from VDSD, including these Artifacts in VDSH.

3.3.4.1.1 Artifact harmonization example
The part of the running example related to artifact harmonization is conceptualized as follows:

1. David in a process of dealing with FRG considers VDSDavid¼{FRG, HWS, DBS}.

2. At the same time, Sean only deals with FRG: VDSSean¼{FRG}.

3. As a result of negotiation, David agrees not to include DBS and HWS into VDSH.

4. Subsequently, the parties agree on VDSH¼{FRG}.

3.3.4.2 Stage 2: Harmonizing property types
For every Software Artifact a in VDSH as agreed on the previous stage, the sides agree on the set of its

Property Types to be included into VDSa
H, the harmonized Property-Level VDS.

It is important to emphasize that the harmonized Property Types conceptualize quality character-

istics and the relevant metrics belonging to different categories, in particular, Business Stakeholders

usually include Property Types conceptualizing quality in use metrics (ISO, 2004) into their VDS,

whereas Developers usually include Property Types conceptualizing external (ISO, 2003a) and internal

(ISO, 2003b) metrics.

Suppose the Business Stakeholder considers the set of external quality-related Property Types

whereas the Developer additionally considers the set of internal quality-related Property Types for

the particular artifact. In a process of negotiation, the Developer could

1. Agree to discuss only Property Types included in VDSa
BS, or not to include other Property Types

from VDSa
D in VDSa

H.

2. Propose that the Business Stakeholder discuss additional Property Types, or external quality-
related Types derived from internal quality-related VDSa

D Property Types; these new Property

Types have to be included into VDSa
H, possibly instead of some Property Types from VDSa

BS.

3.3.4.2.1 Example of harmonizing property types
The part of the running example related to property type harmonization is conceptualized as follows:

1. Having agreed on FRG as the artifact under discussion, the sides have different views concerning

the relevant Property Types:

a. David is going to deal with the Property Types related to internal and external quality:

VDSFRG
David¼{I/Outilization,memoryutilization, response time}

b. Sean restricts himself to Property Types related to the quality in use:

VDSFRG
Sean¼{taskefficiency}.

2. As a result of negotiation:

a. David agrees not to include {I/O utilization, memory utilization} into VDSFRG
H

b. Sean agrees to include response time instead of task efficiency into VDSFRG
H .

3. As a result the parties agree on VDSFRG
H ¼{response time}.

54 CHAPTER 3 Harmonizing the Quality View of Stakeholders

3.3.4.3 Stage 3: Aligning quality views
The sides now align their Quality Views to these View Definition Sets by selecting the appropriate

Quality Assessment Functions. For simplicity, we assume here that the sides align Quality Views con-

taining only Artifact-Level Functions; in this case, these views could be represented as follows:

QVDH ¼ fD
aVDSHa

a2VDSH
�� �

, QVBSH ¼ f BS
aVDSHa

a2VDSH
�� �nn

To align Quality Views, the following activities are performed:

1. The Developer adjusts Quality Assessment Functions belonging to QVD to deal with the Properties

of types belonging to VDSH; in particular the following activities for every a2VDSH are

performed:

a. If a=2VDSDOld (new artifact has been taken into account as a result of harmonization) a

new fD
aVDSHa

is formed and added to the Quality View QVDH (here VDSDOld is the

Developer’s original non-harmonized VDS).

b. If a2VDSDOld, but the corresponding VDSa
DOld 6¼VDSa

H (it has been changed as a result of

harmonization, e.g., by omitting internal quality-related Property Types not understood by

Business Stakeholder), the corresponding fD
aVDSHa

is adjusted to deal with modified VDSa
H.

2. The same activities are performed by Business Stakeholder.

3. Both sides explicitly agree on Quality Types for corresponding Quality Assessment Functions.

For fD
aVDSHa

and f BS
aVDSHa

, a2VDSH, this means that these functions assign Qualities of the same

Quality Types: Iaqt
DH¼ Iaqt

BSH. This can be also performed based on the available historical

information about the Quality Types involved in the past.

As a result, the sides agree on harmonized VDSH and VDSa
H, a2VDSH and the aligned QVDH and

QVBSH.

3.3.4.3.1 Quality view alignment example
The part of the running example related to quality view alignment is conceptualized as follows:

1. Prior to harmonization the parties had the Quality View configurations:

a. QVDavid ¼ fDavid
aVDSDavida

ja2VDSDavid
n o

; this view included the Quality Assessment Function:

�f
David

FRG,VDSDavidFRG
where VDSFRG

David¼{network latency, cachecapacity, response time} as defined

above; this function reflected his ability to assess FRG based on three of its Properties. David’s

Quality View also included �f
David

HWS,VDSDavidHWS
and �f

David

DBS,VDSDavidDBS
but we omit their description here.

b. QVSean ¼ f Sean
aVDSSeana

ja2VDSSean
n o

; this view included only f Sean
FRG,VDSSeanFRG

where

VDSFRG
Sean¼{efficiency} as defined above; this function reflected his ability to assess FRG based

on its perceived efficiency.

2. Now after agreeing on VDSH¼{FRG} and VDSFRG
H ¼{response _ time} both David and Sean

adjust (implicitly, maybe unknowingly for them) their Quality Assessment Functions to reflect their

abilities to assess the Software Artifacts belonging to these VDS. In particular,

553.3 The Harmonization Process

a. David’s assessment functions for HWS and DBS are dropped and his function for FRG is

changed to reflect his ability to assess it based on only one Property, as a result, his adjusted

Quality View is as follows: QVDavidH ¼ fDavid
FRG,VDSHFRG

n o
. Now it reflects his ability to assess FRG

based only on its response time.

b. Sean’s Assessment Function for FRG is changed to reflect his ability to rank FRG based on the

different Property: QVSeanH ¼ f Sean
FRG,VDSHFRG

n o
; now it also reflects his ability to assess FRG based

on the response time (and not on the perceived efficiency).

3. Both David and Sean agree that all Qualities to be associated by their Assessment Functions have to

belong to the same Quality Type: IFRGqt
DavidH¼ IFRGqt

SeanH¼{verybad,bad, satisfactory,good,verygood}.

4. To sum it up, as a result of performing Quality View Alignment activities the sides formed

QVDavidH and QVSeanH reflecting their common (harmonized) abilities to assess the quality of FRG

by associating a common Quality Type to its response time.

It is important to note that the results of the assessments performed by the parties after completing all

the steps of the View Harmonization Process can be different as the functions forming both views are

different; aligning the assessment results (associated Qualities) is the subject of the subsequent quality

harmonization activities.

3.3.5 Quality harmonization process
After completing the View Harmonization Process, the parties are able to assess the harmonized set of

Software Artifacts; this is based (1) on using Properties that are instantiated from the harmonized sets of

Property Types and (2) on using Qualities to represent assessment results that instantiate harmonized

Quality Types. Thus is these parties can agree on the instances of Property Types (particular Properties)

based on the instances of Quality Types (particular associated Qualities); we refer to the process of such

agreement as Quality Harmonization Process.

3.3.5.1 Substitution artifacts
Quality harmonization activities are treated as being based on either the particular versions of the Soft-

ware Artifacts or Substitution Artifacts. Substitution Artifacts are, for example, mockups, software pro-

totypes, and simulation models; they allow for proposing particular Properties (stimuli) to the

Stakeholders as arguments in negotiation instead of Properties of the original Software Artifact under
harmonization and allow for collecting Stakeholders’ reactions to these stimuli (associated Qualities)

in place of the Qualities associated to the original Artifact. The Properties of the Substitution Artifact

have to properly represent the Properties of the original Artifact; as a result, it should be possible to

make decisions regarding the Qualities associated to the original Artifact based on those associated to

the Substitution Artifact.

We conceptualize the Substitution Artifact as the one that inherits the relevant Properties from the
original Software Artifact and makes the original Artifact inherit its associated Qualities in turn.

To simplify the subsequent treatment, we describe Quality Harmonization Process as operating

with different versions of the Software Artifact a2VDSH, where each version is represented by the

set of Properties PaVDSHa
¼ pjp2 Ipt,pt2VDSHa
� �

possibly inhering in a Substitution Artifact for a;

56 CHAPTER 3 Harmonizing the Quality View of Stakeholders

we refer to such set as a particular version of Quality Harmonization Object referred to as

aval ¼PaVDSHa
. We also restrict ourselves to only Artifact-Level Assessments.

3.3.5.2 Rank-oriented and property-oriented harmonization. Expected property state
We conceptualize two possible approaches to the quality harmonization process:

1. Rank-oriented harmonization: Both sides perform assessments of the particular version of aval

(according to their own Quality Views) and perform negotiations based on the ranks over Qualities

associated by these assessments. In particular,

a. The Developer assesses every produced version of aval before submitting it to the Business

Stakeholder associating Quality qDaval .
b. Ranking over Qualities is introduced; according to this rank if r qBSaval

� �
< r qDaval

� �
(the Business

Stakeholder ranks the provided aval less favorable than Developer) the sides try to eliminate the

reasons of these rank differences.

c. In producing aiþ 1
val the Developer is guided by both r qBS

avali

� �
and r qD

avali

� �
.

2. Property-oriented harmonization: Both sides perform negotiations based on Properties and not the

ranks over associated Qualities. In particular:

a. The Developer makes Business Stakeholder experience ai
val D.

b. The Business Stakeholder executes Quality Assessment for ai
valD obtaining Quality qBS

avalDi

, and

provides qBS
avalDi

back to the Developer.

c. The Developer derives aval implicitly desired for Business Stakeholder (his Expected Property

State, ai
valBS) fromai

valD experienced byBusiness Stakeholder and his/her associatedQualityqBS
avalD
i

.

d. In producing aiþ 1
valD the Developer takes into account revealed Expected Property State ai

val BS.

The Expected Property State thus can be defined as the set of aval Properties that is conceived by the
Individual Business Stakeholder as those he/she wants the final version of aval to provide and that can
be the subject of negotiation. The Expected Property State can change throughout the Quality Harmo-

nization Process as a result of the evolution of Business Stakeholder’s quality vision.

In this subsection, we will describe Quality Harmonization Process only for the case of rank-

oriented harmonization due to the space restrictions.

3.3.5.3 Stage 1: Producing an initial example property state
We define our conceptualization for the case when the interaction with Business Stakeholder is per-

formed from the Developer side bymaking the Business Stakeholder experience a version of aval: ai
valD

that could be the subject of subsequent negotiations.
We call ai

valD the Example Property State. It reflects the current state of aval development, although

it should not necessarily be originated from the implemented version of aval. The only requirement for

ai
val D is that it should represent the set of Properties aval is expected to have if implemented exactly as

defined at the given development stage (e.g., according to the set of requirements, as specified by its

accepted design specification, as perceived by the Developers). In practice, the Example Property State

can be produced based on a Substitution Artifact.

At this stage, for every Production iteration j:

1. Developer produces the particular development (internal) version of the Example Property State:

a0j
valD.

573.3 The Harmonization Process

2. Developer executes Quality Assessment based on his/her Quality Assessment Function for a0j
valD

producing Quality qD
a0valDj

.

3. If r qD
a0valDj

	

�CPBD Developer provides a0j

val D to Business Stakeholder as its external version

a0
valD; he/she also takes into account the last qD

a0valDj

as the Quality related to the version shown:

qD
avalD
0

¼ qD
a0valDj

. Here CPBD is the Conditional Production Boundary reflecting the fact that some

level of quality is good enough for the Developer to make him/her stop producing iterations and

show the current aj
valD to the Business Stakeholder.

3.3.5.3.1 Example for producing the initial example property state
As stated in the previous section, as a result of completing View Harmonization process, David

and Sean agreed on VDSH¼{FRG} and VDSFRG
H ¼{response_time} and adjusted their Quality

Views. As a result, the Quality Harmonization Object is instantiated as

FRGval ¼PFRG,VDSHFRG
¼ p2 Iresponse��time

� �
. The relevant activities of the running example are concep-

tualized as follows:

1. David agrees with Sean the rank over {very bad, bad, satisfactory, good, very good} (i.e., they agree

that r(very bad)< r(bad)< r(satisfactory) . . .).
2. David defines for himself his conditional boundary for providing FRGvalDavid version to Sean:

CPBDavid¼ r(good).
3. David produces the internal version of the Example Property State FRG0

j
val David. This state could

look as follows: FRG0
j
valDavid¼{1msresponse_time}; here we denote by valpt the property val of type

pt. This process is repeated for several iterations until he ranks its associated Quality (resulting from

the Assessment) as good or higher: r qDavid
FRG0val David

j

	

� r goodð Þ; it happens on third iteration so it is

satisfied with FRG0
3
valDavid¼{0.25msresponse_time}.

4. David provides FRG0
3
valDavid to Sean as FRG0

valDavid and takes into account qDavid
FRG0valDavid

3

as qDavid
FRGvalDavid

0

.

3.3.5.4 Stage 2: Executing initial assessment and deciding on a negotiation
The initial version of the Example Property State has to be assessed by Business Stakeholder by per-

forming the following steps:

1. Business Stakeholder experiences the initial version of the Example Property State a0
valD provided

by Developer.

2. Business Stakeholder assesses a0
valD (applying his/her Assessment Function) and produces the

Quality qBS
avalD
0

.

3. Prior to making the negotiation decision, two negotiation boundaries for Business Stakeholder

(inside of his mind) have to be established: Unconditional Acceptance Boundary (UABBS) and

Unconditional Rejection Boundary (URBBS); the decision-making process then has the following

form:

a. If r qBS
avalD
0

� �
>UABBS, a0

val D is unconditionally accepted as completely satisfying the Business

Stakeholder; no additional interactions are necessary in this case. Such experience can be of the

58 CHAPTER 3 Harmonizing the Quality View of Stakeholders

great service to the project because it establishes the feeling of trust between Business

Stakeholders and Developers.

b. If r qBS
avalD
0

� �
<URBBS, the harmonization process has to be aborted immediately without any

attempt to perform negotiation and a0
valD is unconditionally rejected as dissatisfying the

Business Stakeholder; such experience can be damaging to the whole project.

c. If r qBS
avalD
0

� �
falls between URBBS and UABBS, the negotiation process has to be initiated.

3.3.5.4.1 Example of a negotiation decision
The relevant activities of the running example are conceptualized as follows:

1. Sean defines UABSean¼ r(good) and URBSean¼ r(bad).

2. Sean experiences FRG0
valDavid¼{0.25msresponse_time} provided by David.

3. Sean assesses FRG0
valDavid and produces qSean

FRGvalDavid
0

¼ bad.

4. Sean checks the negotiation boundaries; as URBSean� r(bad)�UABSean he decides to initiate the

negotiation process.

3.3.5.5 Stage 3: Performing negotiations
The negotiation process is performed iteratively; we denote its iteration as i. For every i, the following
activities are performed:

1. Developer takes into account two Qualities associated with ai� 1
val D: his/her own Quality qD

avalD
i�1

and the

Quality associated by Business Stakeholder qBS
avalD
i�1

.

2. If r qBS
avalD
i�1

� �
< r qD

avalD
i�1

� �
the Developer adjusts Assessment Functions in his QV to come closer to

those of the Business Stakeholder: now getting r qDNew
avalD
i�1

� �
< r qD

avalD
i�1

� �
. This adjustment can be

useful for the subsequent executions of the harmonization process (Assessment Functions can stay

adjusted); also the set of adjusted Assessment Functions can be the input to the knowledge base.

3. Developer (after reaching his CPBD with r qDNew
a0valDj

	

) makes Business Stakeholder experience the

new version of Example Property State ai
valD and Business Stakeholder assesses his/her experience

again producing qBS
avalDi

; in doing this, every side tries to insist on some preferable Qualities, in

particular:

a. Developer tries to keep the ranks for Quality closer to the initial CPBD or even to URBBS to

spend fewer resources.

b. Business Stakeholder tries to keep the ranks for Quality closer to the UABBS as it is better

correspond to what he/she had in mind initially.

4. The negotiation process eventually ends with agreeing upon a version of the Example Property

State shown to the Business Stakeholder: the Accepted Property State avalD *.

3.3.5.5.1 Example of negotiations
For the first negotiation iteration (i¼1) the relevant activities of the running example are conceptual-

ized as follows:

593.3 The Harmonization Process

1. David takes into account qDavid
FRGvalDavid

0

¼ good and qSean
FRGvalDavid

0

¼ bad.

2. As r qSean
FRGval David

0

� �
< r qDavid

FRGvalDavid
0

� �
David adjusts his QV to make possible obtaining

qDavidNew
FRGvalDavid

0

¼ satisfactory (so it is ranked closer to the Quality provided by Sean).

3. David produces FRG1
valDavid¼{0.1msresponse_time}, which he again assesses as qDavidNew

FRGvalDavid
1

¼ good

(but with adjusted QV) and makes Sean experience and assess it.

4. Sean now obtains qSean
FRGvalDavid

1

¼ good.

5. The sides agree on the Accepted Quality State FRGvalDavid *¼{0.1msresponse_time}.

3.3.6 State of the art: Addressing harmonization process activities
3.3.6.1 Addressing organization sides
We start from approaches that provide generic conceptualizations of the organizational Entities. There

are several approaches to such conceptualizations besides UFO-C, in particular, Boella and van der

Torre (2006) introduces a foundational ontology of organizations and roles, Bottazzi and Ferrario

(2005) define a basic ontology of organizations that is grounded in DOLCE foundational ontology,

and Dietz and Habing (2004) describe a meta-ontology for organizations. Other approaches are

grouped under the umbrella title of Enterprise ontology; they address different components of the

real-world enterprise. Generic enterprise ontologies are presented in Abramowicz et al. (2008),

Albani et al. (2006), and Almeida and Cardoso (2011). Another approach is grounded in UFO

(Barcellos and de Almeida Falbo, 2009), and the practical ontology-based implementation of the

set of such concepts is defined for the Jade agent development framework (Baldoni et al., 2010).

3.3.6.2 Addressing quality subjects
Most of the ontologies of organizations and social aspects (in particular UFO-C, the foundational ontol-

ogy from Boella and van der Torre, 2006 and the practical implementation from Baldoni et al., 2010)

include notions for the organizational roles that could be applied to Quality Subjects; more specific

conceptualization approaches include an ontology of social roles (Boella and Van Der Torre,

2007). Baldoni et al. (2006) treat these roles as affordances.

While dealing with the approaches that address the abilities and intentions of Quality Subjects, first

of all, it is necessary to categorize those addressing the actors who participate in the software process.

Some conceptualization approaches include the notion of stakeholder, but do not connect this notion to

the quality assessment process by disallowing per-stakeholder assessments (Gilb, 1988; Kim and Lee,

2005); other techniques allow such assessments (Chung and do Prado Leite, 2009; Chung et al., 1999;

Jureta et al., 2009a). A generic attempt to define the foundation of knowledge-related abilities of stake-

holders can be based on a knowledge-management ontology (Holsapple and Joshi, 2006). For the field

of requirements engineering, the most detailed treatment of stakeholder capabilities is provided in

CORE (Jureta et al., 2009a); this treatment is discussed below.

The closest notion to UFO intentions and the derived concepts introduced in this chapter is the con-

cept of stakeholder speech mode introduced by the CORE ontology (Jureta et al., 2009a), which rep-

resents an uttered stakeholder intention with reference to some aspects of the UoD.

We categorize the techniques addressing stakeholder intentions according to these modes:

60 CHAPTER 3 Harmonizing the Quality View of Stakeholders

1. Directive mode defines explicit goals also addressed, for example, in Chung and do Prado Leite

(2009), Kassab et al. (2009), Zhu and Gorton (2007), or in Boehm and In (1996), Krogstie (1998) as

quality constraints. See also the notion of a soft goal in Chung et al. (1999) and derived works for a

goal that could be only satisfied to some degree.

2. Declarative/assertive mode defines assumptions or the values of attributes (Kayed et al., 2009).

3. Expressive mode is used to declare evaluations also addressed, for example, in Choi et al. (2008)

and Tian (2004).

3.3.6.3 Generic process-based techniques
Prior to aligning the state-of-the-art approaches to harmonization levels, we need to briefly consider

generic process-level techniques aimed at conceptualizing software quality negotiation.

Software process conceptualization techniques (Acuna and Sanchez-Segura, 2006; Adolph et al.,

2012; Münch et al., 2012) propose conceptual foundations for formalizing software process activities,

in particular those involving business stakeholders. Some of these approaches are grounded in foun-

dational ontologies. In particular, UFO-based software process conceptualizations are defined in

Guizzardi et al. (2008). The most relevant among these techniques is an approach by Adolph et al.

(2012) that proposes a conceptualization of the development activities aimed at reaching common

understanding between the parties in this process. We discuss this approach in more detail at the

end of this section while addressing the treatment of harmonization levels.

Quality-driven process support approaches aim at using quality to drive the whole software process

or its particular tasks. Among these approaches are Quality-Driven Re-Engineering (Tahvildari et al.,

2003) approaches targeting quality-driven development restricted to the architectural design phase

(Kim et al., 2010) and techniques that aim at making the entire software process driven by quality with-

out organizing direct interaction with stakeholders (de Miguel et al., 2008; Grambow et al., 2011;

Hummel et al., 2010; Matinlassi, 2005).

3.3.6.4 Addressing harmonization activities
There are several categories of methods addressing the issue of involving stakeholders in the develop-

ment process as a means for performing the harmonization activities; in describing them, we follow the

classification of the methods to represent the quality of the prospective system proposed by Bosch

(Bosch, 2000), which includes request- and scenario-based techniques, prototyping, and simulation.

Request-centered techniques implement the way of questioning the business stakeholders and pro-

cessing their opinions. Empirical techniques (Drew et al., 2006) such as surveys, interviews, brain-

storming, questionnaires, or checklists are used (Lauesen, 2002; McManus, 2004) together with

software engineering-specific techniques such as CRC cards (Bellin and Suchman-Simone, 1997).

Scenario-centered techniques (Carroll, 1995) organize scenarios of stakeholder interaction with

software under development to harmonize qualities; they often rely on request-centered techniques

to process the opinions of business stakeholders. In the manual scenario-centered approach, the stake-

holders are requested to go through the scenarios (without interacting with the prospective software or

its executable model) and express their opinions. The techniques of this kind are widely used to eval-

uate software architectures (Kazman et al., 1999; Williams and Smith, 2002) and to elicit quality

requirements (Barbacci et al., 2003; Gregoriades and Sutcliffe, 2005; Lassing et al., 2002; Sindre

and Opdahl, 2005). In industry, such scenarios are often based on user stories (Cohn, 2004): Together

they form an approach to gather user requirements in the agile software process (Leffingwell, 2011).

613.3 The Harmonization Process

Prototyping techniques use system prototypes as an aid for business stakeholders (Arnowitz et al.,

2007), helping them to express their quality preferences. The notion of traditional prototype refers to a

scaled-down version of the final system running in its intended context (Floyd, 1984; Lim et al., 2008).

They are used in requirement engineering, being embedded into scenarios (Sutcliffe and Ryan, 1998;

Tolstedt, 2002) and during the software design activities (Hartmann, 2009). In industry, prototypes are

often supplemented by mockups that are simplified versions of prototypes not integrated into usage

scenarios and often not requiring writing any code (Schneider, 2007). Implementing mockup-like solu-

tions exclusively as sketches on paper is also known as paper prototyping (Snyder, 2003).

Simulation-based techniques use simulation in a sense of “the process of designing and creating a

computerized model of a real or proposed system for the purpose of conducting numerical experi-

ments” (Kelton et al., 2004) to model quality characteristics in a way that can be used to support stake-

holder involvement. Performance prototyping techniques (Hennig et al., 2003) allow performance

simulations to be used as alternatives for prototypes. Other performance simulation solutions are

described in Bause et al. (2008), Cortellessa et al. (2008), and Driss et al. (2008). Reliability simulations

are proposed in Gokhale et al. (1998), Grishikashvili Pereira and Pereira (2007), and Looker et al.

(2007). Some solutions embed quality simulations in context of usage scenarios (Egyed, 2004;

Haumer et al., 1999) or complete business processes (Fritzsche et al., 2008, 2009; Jansen-Vullers

and Netjes, 2006; Marzolla and Balsamo, 2004; Rozinat et al., 2009; Tewoldeberhan and Janssen,

2008).

An important generic approach addressing different levels of harmonization is provided by Adolph

et al. (2012). In this work, the harmonization process is treated in detail: It is oriented at reconciling

perspectives, where the perspectives refer to the views of different process participants. However, the

authors propose the approach for language and view harmonization but not specifically related to qual-

ity issues. Consequently, our work may be considered as a specialization of this approach targeting the

harmonization of quality-related perspectives.

3.4 PRACTICAL RELEVANCE
In this section, we describe how our research relates to the practice of software development. First, we

describe the empirical studies that formed the starting point for our conceptualizations. These studies

have been carried out in cooperation with industrial partners in the framework of the QuASE project.

After that, we outline the practical application of our conceptualizations in knowledge-oriented

solutions.

3.4.1 Empirical studies
We conducted empirical studies from March 2012 to July 2013 in cooperation with five IT organiza-

tions having the following diverse characteristics:

1. A: middle-sized product-oriented IT company targeting the healthcare sector that follows the

product line approach in organizing its development projects.

2. B: smaller-sized solution-oriented IT company also offering consulting services.

3. C: small consulting and solution development company targeting SAP applications.

62 CHAPTER 3 Harmonizing the Quality View of Stakeholders

4. D: middle-sized consulting and solution development company with an expertise in quality

assurance and management.

5. E: IT service department of a large service-providing company.

3.4.1.1 Conducting interviews
The main data collection method was to conduct structured and semi-structured interviews. Twenty-

nine interviews were conducted in two time intervals: 14 interviews in March-June 2012 and 15 inter-

views in April-July 2013. In the first period, the interviews involved staff of A and B; in the second

period the three other companies were involved. The total duration of the interviews was about 40 h; all

the interview conversations have been digitally recorded and then transcribed. In total, about 150 ques-

tions were discussed (3-4 per hour).

For every company, we interviewed people belonging to three main categories: top managers

(CEO/CIO), project managers, and software engineers; the latter group has been subdivided into line

developers, software architects, analysts, and requirement engineers. For some companies, such as

company B, it was not possible to put the people (except top managers) into a particular category

because this company expects from its staff the ability to perform different software engineering

and project management activities.

Prior to an interview, its plan has been agreed with the participant, but interviewers were allowed to

ask additional questions that were generated by the answers on previous questions. Three sets of ques-

tions (related to top managers, project managers, and developers) were discussed with the relevant staff

members of all five companies; the questions belonging to these sets were adjusted as a result of the

previous interviews, but core questions remained the same. This allowed for the comparison of the

results obtained in different contexts.

Three interviews with staff members of A were of a different kind: They were devoted to discussing

the issues arising in the company’s ongoing projects; consequently, both project managers and

involved developers participated. One of the projects under discussion was in trouble, so the possible

reasons for such situation were discussed, too.

3.4.1.2 Postmortem analysis
In addition to the interviews, a postmortem analysis of already finished projects was performed in A, B,

and D. Prior to performing the analysis, a documentation meeting was held with the responsible staff

members. The documents available for analysis included requirement specifications, meeting minutes,

excerpts from the data collected in the company IMS or wiki.

3.4.1.3 Data processing
After transcription of the interviews and performing postmortem analysis, the collected data was pro-

cessed as follows:

1. We started from performing open coding (Corbin and Strauss, 2008; Strauss and Corbin, 1998) of

the transcripts with a goal of obtaining an initial set of concepts based on the indicators presented in

the data.

2. After the initial set of concepts was established (as a result of the first period’s interviews), we

compared the indicators from the new interview transcripts with the existing concepts and revised

633.4 Practical Relevance

these concepts if necessary; the exact sets of questions for the interviews belonging to the second

time interval was based on the answers of the previous interviews.

3. We performed axial coding (Strauss and Corbin, 1998) with the goal of establishing the

relationships between the concepts belonging to the initial set.

4. The obtained preliminary set of concepts and their relationships was validated by the staff of the

relevant company-partner; during that validation, necessary modifications were proposed and

discussed.

3.4.1.4 Soundness factors
The following factors contributed to the soundness of the empirical studies and, as a result, the sound-

ness of their results:

1. Diversity of the represented companies, ability to ask compatible interview questions in different

contexts and compare the results.

2. Ability to interview company staff workers belonging to different groups with the sets of questions

specifically targeting the particular group.

3. Ability to supplement the interview data with the data obtained as a result of postmortem analysis.

4. Using sound qualitative research principles in conducting the interviews and processing their

results. In particular, by sampling of the people involved in the interviews and by defining the scope

of the interviews we followed the principles of theoretical sampling that are part of the grounded

theory approach (Strauss and Corbin, 1998).

5. Ability to validate the obtained set of concepts by the partner companies.

3.4.2 Practical application
A software tool based on the presented conceptualizations of the harmonization process is currently

under development as a part of the QuASE project. It aims at providing support for

1. Acquiring and formalizing domain knowledge about handling quality-related issues in software

processes (we conceptualize such issues as the triggers for launching quality harmonization

processes).

2. Collecting the raw information about such issues from the involved parties and converting it into

operational knowledge (using available domain knowledge to ensure conversion correctness).

3. Using the collected knowledge for establishing a quality-related communication basis for the

involved parties, supporting decision making, reusing quality-related experience, and predicting

future quality-related requirements of the involved parties.

3.4.2.1 The QuASE process
We established a four-stage QuASE process (Figure 3.7).

1. The elicitation stage is devoted to acquiring the raw information about quality-related issues

and the relevant harmonization processes from the different parties in a software process and

converting this information into a set of semantic knowledge structures that reflect the views

of these parties.

2. The integration stage is devoted to converting and integrating (including conflict resolution) the

results of stage 1 into a “global view.”

64 CHAPTER 3 Harmonizing the Quality View of Stakeholders

3. During the analysis stage the analytical tasks such as facilitating knowledge reuse or predicting the
handling of the future issues are solved based on the global view.

4. The dissemination stage is devoted to converting and externalizing the global view back into the

form that reflects the views of the different parties.

Due to space restrictions, we will describe in detail only the elicitation stage of the QuASE process.

3.4.2.2 QuOntology and QuIRepository
The process is based on managing the knowledge about quality-related issues and relevant harmoni-

zation processes in a repository that serves as an experience base (QuIRepository) and is structured

along an ontology (QuOntology). QuOntology incorporates, among others, the set of concepts pre-

sented in the previous sections. It aims at sharing the conceptual knowledge about software quality,

supplying the semantics to supplement the information about quality-related issues and relevant har-

monization processes before converting it into the knowledge structures to be stored into QuIReposi-

tory; it serves as a foundation of the QuIRepository by defining its structure.

QuIRepository is intended for storing the operational knowledge about quality-related issues as

instances of the QuOntology concepts. For the general principles of establishing the QuIRepository,

the concept of experience-knowledge base (Basili et al., 1994; Schneider, 2009) is extended to enable

collecting and sharing quality-related experience. QuIRepository has to be organized into subsections

corresponding to the knowledge supporting the various stages of the QuASE approach by applying

knowledge modularization techniques (Stuckenschmidt et al., 2009). In this, we follow Babar

(2009) and Feldmann et al. (1999), who propose a knowledge base that facilitates software engineering

activities on different stages.

3.4.2.3 Elicitation stage
This stage is devoted to (1) acquiring the raw information on quality-related issues and the relevant

harmonization processes from the different parties of the software process, (2) supplementing it by

semantics obtained from QuOntology, and (3) storing the resulting knowledge into QuIRepository.

We concentrate on collecting party-dependent knowledge based on the views and understanding of

the particular party (i.e., its specific language) from the following sources:

1. The systems deployed at the developer side to support the software process (IMS, wikis etc.).

2. The process of instrumented stakeholder interaction, where business stakeholders interact with
QuASE-enhanced substitution artifacts (e.g., prototypes and mockups) in the usual way; but the

information about stakeholders’ reactions to stimuli (e.g., mouse clicks or selected control paths) is

transparently captured and collected into QuIRepository.

3. Direct stakeholder communication specifying the assessments of quality characteristics, such as

usability assessments expressed while interacting with a substitution artifact such as mock-up or

prototype.

FIGURE 3.7

Stages of the QuASE process.

653.4 Practical Relevance

Figure 3.8 illustrates an exemplary situation. Suppose that the stakeholders X (project manager) and Y
(developer) state their knowledge on the harmonization process related to issue A (a particular per-
formance issue) in their terminology, whereas stakeholder Z (business person on the customer side)
uses his terminology for stating his knowledge on the harmonization process related to issue B (a par-
ticular usability issue). Neither Y knows the terminology of business stakeholder Z, nor does Z under-

stand the terminology of the IT-persons X and Y. These problematic links are denoted by question

marks in Figure 3.8.

X and Y provide their knowledge about issue A via an external IMS, Z provides his knowledge

about issue B via instrumented interaction with a prototype. This raw data is supplemented with the

semantics from QuOntology (comprised, in particular, of the concepts defined in this chapter). The

results are stored into the party-dependent knowledge section PD of QuIRepository, where each view

has its separate subsection. Knowledge about a particular issue and the relevant harmonization process

can be found in different subsections corresponding to the respective views.

To establish a theoretical basis for the acquisition of the raw information from the parties and con-

verting it into knowledge, it is necessary to conceptualize the data to be collected. The set of concepts

presented in this chapter are the basis of this conceptualization. In addition, the concept of quality-
related issue has to be defined generalizing the artifacts available in existing IMS; in particular, it

is necessary to treat software requirements as specific categories of issues (Shekhovtsov et al.,

2013; Weinreich and Buchgeher, 2010) and associate conceptualized harmonization processes such

as defined in Section 3.3 with the particular issues triggering them. To formalize the process of acquir-

ing party-dependent knowledge with a support of QuOntology, we apply the techniques of ontology-

based knowledge acquisition (Abecker and Elst, 2009; Aroyo et al., 2006; Lebbink et al., 2002; Wang

et al., 2002) and experience-knowledge transformation (Sanin et al., 2007).

3.5 CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS
3.5.1 Basic conclusions
In this chapter, we presented a set of concepts describing the process of harmonizing the views on qual-

ity possessed by the different sides involved in a software process. These concepts

FIGURE 3.8

QuASE process elicitation stage knowledge conversions.

66 CHAPTER 3 Harmonizing the Quality View of Stakeholders

1. Are based on applying empirical techniques to the qualitative data obtained from the business

partners in the framework of the QuASE project.

2. Are grounded in a set of basic concepts provided by the UFO.

Combining these two characteristics of the provided conceptualizations allowed us

1. To supply these conceptualizations with real-world semantics supported by empirical evidence and,

as a result, more truthful to the view harmonization domain.

2. To make explicit their ontological commitments.

Our conceptualizations could be used as a reference framework for applications in the domain of har-

monizing the views on quality; the conceptual models utilized by these tools could be based on these

concepts to achieve a higher degree of reuse and semantic interoperability. Reaching the above two

goals contributes to the effectiveness of these practical applications as allows conceptual models to

be at the same time based on reality, verifiable and conceptually clear.

3.5.2 Future research and implementation directions
Future directions of research include reaching a deeper degree of grounding in the existing foundational

and upper-level ontologies, in particular, UFO-C as an ontology of social connections between the

actors, ontologies of organizations and roles, and ontologies related to knowledge acquisition and

representation.

From the implementation point of view, we are in a process of applying the proposed conceptual-

izations by implementing a complete common ontology of quality-related stakeholder interactions

(QuOntology) that is intended for sharing the conceptual knowledge about the domain and for support-

ing the harmonization process. In particular, the QuASE tool will support the following stages of a

harmonization process based on QuOntology:

1. Acquiring the raw information about quality-related issues (in a sense of issue management systems

such as JIRA) from the different parties in a software process and converting this information into a

set of semantic knowledge structures reflecting the views of these parties (with a process of

conversion here and during the following stages supported by the necessary semantics available

from QuOntology).

2. Converting and integrating (including conflict resolution) the results of the previous stage into a

“global view” (separating party-independent and party-specific knowledge).

3. Converting and externalizing the global view back into the form that reflects the views of the

different parties.

Acknowledgment
The QuASE Project is sponsored by the Austrian Research Promotion Agency (FFG) in the framework of the

Bridge 1 program (http://www.ffg.at/bridge1); Project ID: 3215531.

67Acknowledgment

http://www.ffg.at/bridge1

References
Aagedal, J., de Miguel, M.A., Fafournoux, E., Lund, M.S., Stolen, K., 2004. UML Profile for Modeling Quality of

Service and Fault Tolerance Characteristics and Mechanisms, Technical report TR 2004-06-01, Object Man-

agement Group.

Abecker, A., Elst, L., 2009. Ontologies for knowledge management. In: Staab, S., Studer, R. (Eds.), Handbook on

Ontologies (International Handbooks on Information Systems). Springer, Berlin/Heidelberg, pp. 713–734.

Abramowicz, W., Filipowska, A., Kaczmarek, M., Pedrinaci, C., Starzecka, M., Walczak, A., 2008. Organization

structure description for the needs of semantic business process management. In: 3rd International Workshop

on Semantic Business Process Management Colocated with 5th European Semantic Web Conference.

Acuna, S.T., Sanchez-Segura, M.I. (Eds.), 2006. New Trends in Software ProcessModeling.World Scientific Pub-

lishing, Singapore.

Adolph, S., Hall, W., Kruchten, P., 2011. Using grounded theory to study the experience of software development.

Empir. Softw. Eng. 16, 487–513.

Adolph, S., Kruchten, P., Hall, W., 2012. Reconciling perspectives: a grounded theory of how people manage the

process of software development. J. Syst. Softw. 85, 1269–1286.

Al Balushi, T.H., Sampaio, P.R.F., Dabhi, D., Loucopoulos, P., 2007. ElicitO: a quality ontology-guided NFR

elicitation tool. In: Sawyer, P., Paech, B., Heymans, P. (Eds.), REFSQ 2007. In: Lecture Notes in Computer

Science, vol. 4542. Springer, Berlin/Heidelberg, pp. 306–319.

Albani, A., Dietz, J.L., Zaha, J.M., 2006. Identifying business components on the basis of an enterprise ontology.

In: Interoperability of Enterprise Software and Applications. Springer, Berlin/Heidelberg, pp. 335–347.

Almeida, J.P.A., Cardoso, E., 2011. On the elements of an enterprise: towards an ontology-based account.

In: Proceedings of the 2011 ACM Symposium on Applied Computing. ACM, New York, pp. 323–330.

Apvrille, L., Courtiat, J.-P., Lohr, C., de Saqui-Sannes, P., 2004. TURTLE: a real-time UML profile supported by

formal validation toolkit. IEEE Trans. Softw. Eng. 30 (7), 473–487.

Arnowitz, J., Aretn, A., Berger, N., 2007. Effective Prototyping for Software Makers. Morgan Kaufmann, San

Francisco, CA.

Aroyo, L., Denaux, R., Dimitrova, V., Pye, M., 2006. Interactive ontology-based user knowledge acquisition: a

case study. In: ESCW’06.

Aßmann, U., Zschaler, S., 2006. Ontologies, meta-models, and themodel-driven paradigm. In: Calero, C., Ruiz, F.,

Piattini, M. (Eds.), Ontologies for Software Engineering and Software Technology. Springer, Berlin/

Heidelberg, pp. 255–279.

Babar, M.A., 2009. Supporting the software architecture process with knowledge management. In: Babar, M.A.,

Dings�yr, T., Lago, P., van Vliet, H. (Eds.), Software Architecture Knowledge Management. Springer, Berlin/

Heidelberg, pp. 69–86.

Baldoni,M., Boella, G., Genovese, V.,Mugnaini, A., Grenna, R., van der Torre, L., 2010. Amiddleware for model-

ing organizations and roles in jade. In: Programming Multi-Agent Systems. Springer, Berlin/Heidelberg,

pp. 100–117.

Baldoni, M., Boella, G., Van Der Torre, L., 2006. Modelling the interaction between objects: roles as affordances.

In: Knowledge Science, Engineering and Management. Springer, Berlin/Heidelberg, pp. 42–54.

Barbacci, M., Ellison, R., Lattanze, A., Stafford, J., Weinstock, C.B., Wood, W.G., 2003. Quality Attribute Work-

shops (QAWs), third ed. Carnegie Mellon University, Pittsburgh, PA.

Barcellos, M.P., de Almeida Falbo, R., 2009. Using a foundational ontology for reengineering a software enterprise

ontology. In: Advances in Conceptual Modeling-Challenging Perspectives. Springer, Berlin/Heidelberg,

pp. 179–188.

Barcellos, M.P., Falbo, R.D.A., Dalmoro, R., 2010. A well-founded software measurement ontology.

In: Proceedings of the 6th International Conference on Formal Ontology in Information Systems (FOIS

2010), Toronto-Canadá.

68 CHAPTER 3 Harmonizing the Quality View of Stakeholders

http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0010
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0010
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0015
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0015
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0015
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0020
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0020
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0025
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0025
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0030
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0030
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0035
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0035
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0035
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0040
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0040
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0045
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0045
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0050
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0050
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0055
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0055
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0060
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0060
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0065
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0065
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0065
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0070
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0070
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0070
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0070
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0075
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0075
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0075
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0080
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0080
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0085
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0085
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0090
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0090
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0090
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0095
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0095
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0095

Basili, V., Caldiera, G., Rombach, D.H., 1994. Experience factory. In: Marciniak, J.J. (Ed.), Encyclopedia of Soft-

ware Engineering. Wiley, New York, pp. 469–476.

Bause, F., Buchholz, P., Kriege, J., Vastag, S., 2008. A framework for simulation models of service-oriented archi-

tectures. In: SIPEW 2008. In: Lecture Notes in Computer Science, vol. 5119. Springer, Berlin/Heidelberg,

pp. 208–227.

Bellin, D., Suchman-Simone, S., 1997. The CRC Card Book. Addison-Wesley, Reading, MA.

Bertoa,M.,Vallecillo,A.,Garc¡a, F., 2006.Anontology for softwaremeasurement. In:Calero,C.,Ruiz,F., Piattini,M.

(Eds.),Ontologies for SoftwareEngineering andSoftwareTechnology.Springer,Berlin/Heidelberg, pp. 175–196.

Boehm, B., Brown, J.R., Kaspar, H., Lipow, M., MacLeod, G.J., Merritt, M.J., 1978. Characteristics of Software

Quality. North Holland, New York.

Boehm, B., In, H., 1996. Identifying quality-requirements conflicts. IEEE Softw. 13 (2), 25–35.

Boella, G., van der Torre, L., 2006. A foundational ontology of organizations and roles. In: Baldoni, M., Endriss, U.

(Eds.), Declarative Agent Languages and Technologies IV. Lecture Notes in Computer Science, vol. 4327.

Springer, Berlin-Heidelberg, pp. 78–88.

Boella, G., Van Der Torre, L., 2007. The ontological properties of social roles in multi-agent systems: definitional

dependence, powers and roles playing roles. Artif. Intell. Law 15 (3), 201–221.

Bosch, J., 2000. Design and Use of Software Architectures. Addison-Wesley, Reading, MA.

Bottazzi, E., Ferrario, R., 2005. A path to an ontology of organizations. In: Guizzardi, G., Wagner, G. (Eds.),

VORTE’05, pp. 9–16.

Burgués, X., Franch, X., Ribó, J.M., 2005. A MOF-compliant approach to software quality modeling.

In: Delcambre, L., Kop, C., Mayr, H.C., Mylopoulos, J., Pastor, O. (Eds.), Conceptual Modeling—ER

2005. In: Lecture Notes in Computer Science, vol. 3716. Springer, Berlin/Heidelberg, pp. 176–191.

Cachero, C., Calero, C., Poels, G., 2007. Metamodeling the quality of the web development process’ intermediate

artifacts. In: Baresi, L., Fraternali, P., Houben, G.-J. (Eds.), WISE 2007. In: Lecture Notes in Computer Sci-

ence, vol. 4607. Springer, Berlin/Heidelberg, pp. 74–89.

Carroll, J.M. (Ed.), 1995. Scenario-Based Design. Wiley, New York.

Carvallo, J.P., 2005. Systematic construction of quality models for COTS-based systems (Ph.D. thesis). Universitat

Politècnica de Catalunya, Barcelona.

Choi, Y., Lee, S., Song, H., Park, J., Kim, S.H., 2008. Practical S/W component quality evaluation model. In: 10th

IEEE International Conference on Advanced Communication Technology (ICACT’08). IEEE Press, New

York, pp. 259–264.

Chung, L., do Prado Leite, J., 2009. On non-functional requirements in software engineering. In: Borgida, A.T.,

Chaudhri, V.K., Giorgini, P., Yu, E.S. (Eds.), Conceptual Modeling: Foundations and Applications. Lecture

Notes in Computer Science, vol. 5600. Springer, Berlin/Heidelberg, pp. 363–379.

Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J., 1999. Non-Functional Requirements in Software Engineering.

Kluwer Academic Publishers, Boston, MA.

Cohn, M., 2004. User Stories Applied: For Agile Software Development. Addison Wesley, Reading, MA.

Coleman, G., O’Connor, R., 2008. Investigating software process in practice: a grounded theory perspective. J.

Syst. Softw. 81, 772–784.

Cooper, A., 2004. The Inmates are Running the Asylum. Sams, Indianapolis, IN.

Corbin, J., Strauss, A., 2008. Basics of Qualitative Research, third ed. Sage Publications, Thousand Oaks, CA.

Cortellessa, V., Pierini, P., Spalazzese, R., Vianale, A., 2008. MOSES: modeling software and platform architec-

ture in UML 2 for simulation-based performance analysis. In: QoSA 2008. In: Lecture Notes in Computer

Science, vol. 5281. Springer, Berlin/Heidelberg, pp. 86–102.

de Almeida Falbo, R., Nardi, J.C., 2008. Evolving a software requirements ontology. In: XXXIV Conferencia Lati-

noamericana de Informática, Santa Fe, Argentina, pp. 300–309.

de Miguel, M.A., Massonet, P., Silva, J.P., Briones, J., 2008. Model based development of quality-aware software

services. In: ISORC’08. IEEE, New York, pp. 563–569.

69References

http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0100
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0100
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0105
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0105
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0105
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0110
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0115
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0115
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0120
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0120
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0125
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0130
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0130
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0130
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0135
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0135
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0140
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0145
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0145
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0150
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0150
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0150
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0155
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0155
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0155
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0160
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0165
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0165
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0165
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0170
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0170
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0170
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0175
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0175
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0180
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0185
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0185
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0190
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0195
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0200
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0200
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0200
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0205
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0205
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0210
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0210

Deissenboeck, F., Juergens, E., Lochmann, K., Wagner, S., 2009. Software quality models: purposes, usage sce-

narios and requirements. In: 7th International Workshop on Software Quality (WoSQ 09). IEEE Press, New

York, pp. 9–14.

Dietz, J.L., Habing, N., 2004. A meta ontology for organizations. In: On the Move to Meaningful Internet Systems

2004: OTM 2004 Workshops. Springer, Berlin/Heidelberg, pp. 533–543.

Drew, P., Raymond, G., Weinberg, D. (Eds.), 2006. Talk and Interaction in Social Research Methods. Sage Pub-

lications, Thousand Oaks, CA.

Driss, M., Jamoussi, Y., Jezequel, J.-M., Hajjami, H., Ghezala, B., 2008. A discrete-events simulation approach for

evaluation of service-based applications. In: ECOWS’08. IEEE, New York, pp. 73–78.

Dromey, R.G., 1996. Cornering the chimera. IEEE Softw. 13, 33–43.

Egyed, A., 2004. Dynamic deployment of executing and simulating software components. In: Component Deploy-

ment. Lecture Notes in Computer Science, vol. 3083. Springer, Berlin/Heidelberg, pp. 113–128.

Falbo, R.A., Guizzardi, G., Duarte, K.C., 2002. An ontological approach to domain engineering. In: 14th Inter-

national Conference on Software Engineering and Knowledge Engineering (SEKE’02). ACM Press, New

York, pp. 351–358.

Feldmann, R.L., Geppert, B., Rößler, F., 1999. An integrating approach for developing distributed software

systems—combining formal methods, software reuse, and the experience base. In: ICECCS’99. IEEE, New

York, pp. 54–63.

Fenton, N., Pfleeger, S.L., 1997. Software Metrics: A Rigorous and Practical Approach. PWS Publishing, Boston,

MA.

Floyd, C., 1984. A systematic look at prototyping. In: Approaches to Prototyping. Springer, Berlin/Heidelberg,

pp. 1–17.

Fritzsche, M., Gilani, W., Fritzsche, C., Spence, I., Kilpatrick, P., Brown, J., 2008. Towards utilizing model-

driven engineering of composite applications for business performance analysis. In: ECMDA-FA’08,

pp. 369–380.

Fritzsche, M., Picht, M., Gilani, W., Spence, I., Brown, J., Kilpatrick, P., 2009. Extending BPM environments of

your choice with performance related decision support. In: BPM 2009. In: Lecture Notes in Computer Science,

vol. 5701. Springer, Berlin/Heidelberg, pp. 97–112.

Gärdenfors, P., 2000. Conceptual Spaces: A Geometry of Thought. MIT Press, Cambridge, MA.

Gilb, T., 1988. Principles of Software Engineering Management. Addison Wesley, Reading, MA.

Gokhale, S.S., Lyu, M.R., Trivedi, K.S., 1998. Reliability simulation of component-based software systems.

In: ISSRE’98, pp. 192–201.

Grambow, G., Oberhauser, R., Reichert, M., 2011. Contextual injection of quality measures into software engi-

neering processes. Int. J. Adv. Softw. 4 (1–2), 76–99.

Gregoriades, A., Sutcliffe, A., 2005. Scenario-based assessment of nonfunctional requirements. IEEE Trans.

Softw. Eng. 31 (5), 392–409.

Grishikashvili Pereira, E., Pereira, R., 2007. Simulation of fault monitoring and detection of distributed services.

Simul. Model. Pract. Theory 15, 492–502.

Guizzardi, G., 2005. Ontological foundations for structural conceptual models, University of Twente.

Guizzardi, G., Falbo, R., Guizzardi, R.S., 2008. Grounding software domain ontologies in the unified foundational

ontology (UFO): the case of the ODE software process ontology. In: Proceedings of the XI Iberoamerican

Workshop on Requirements Engineering and Software Environments, pp. 244–251.

Guizzardi, G., Wagner, G., 2005. Towards ontological foundations for agent modelling concepts using the unified

fundational ontology (UFO). In: Bresciani, P., Giorgini, P., Henderson-Sellers, B., Low, G., Winikoff, M.

(Eds.), Agent-Oriented Information Systems II. In: Lecture Notes in Computer Science, vol. 3508. Springer,

Berlin/Heidelberg, pp. 110–124.

Guizzardi, G., Zamborlini, V., 2013. A common foundational theory for bridging two levels in ontology-driven

conceptual modeling. In: Software Language Engineering. Springer, Berlin/Heidelberg, pp. 286–310.

70 CHAPTER 3 Harmonizing the Quality View of Stakeholders

http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0215
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0215
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0215
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0220
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0220
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0225
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0225
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0230
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0230
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0235
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0240
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0240
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0245
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0245
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0245
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0250
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0250
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0250
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0255
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0255
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0260
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0260
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0265
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0265
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0265
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0270
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0270
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0270
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0275
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0280
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0285
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0285
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0290
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0290
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0295
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0295
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0300
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0300
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0305
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0305
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0305
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0310
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0310
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0310
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0310
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0315
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0315

Hartmann, B., 2009. Gaining design insight through interaction prototyping tools (Ph.D. dissertation), Stanford

University.

Haumer, P., Heymans, P., Jarke, M., Pohl, K., 1999. Bridging the gap between past and future in RE: a scenario-

based approach. In: RE’99. IEEE CS Press, New York, pp. 66–73.

Hennig, A., Hentschel, A., Tyack, J., 2003. Performance prototyping—generating and simulating a distributed IT-

system from UML models. In: ESM’2003. IEEE, New York.

Herre, H., 2010. General formal ontology (GFO): a foundational ontology for conceptual modelling. In: Poli, R.,

Healy, M., Kameas, A. (Eds.), Theory and Applications of Ontology: Computer Applications. Springer,

Netherlands, pp. 297–345.

Holsapple, C.W., Joshi, K., 2006. Knowledge management ontology. In: Encyclopedia of Knowledge Manage-

ment. Idea Group Reference, Hershey, PA, pp. 397–402.

Hummel, O., Momm, C., Hickl, S., 2010. Towards quality-aware development and evolution of enterprise infor-

mation systems. In: Proceedings of the 2010 ACM Symposium on Applied Computing. ACM, Sierre,

Switzerland, pp. 137–144.

IEEE, 1998. IEEE 1061-1998: IEEE Standard for Software Quality Metrics Methodology. IEEE Press, New York.

ISO, 2001. ISO/IEC 9126-1:2001: Software Engineering—Product Quality—Part 1: Quality Model. International

Organization for Standardization, Geneva.

ISO, 2003a. ISO/IEC 9126-2:2003: Software Engineering—Product Quality—Part 2: External Metrics. Interna-

tional Organization for Standardization, Geneva.

ISO, 2003b. ISO/IEC 9126-3:2003: Software Engineering—Product Quality—Part 3: Internal Metrics. Interna-

tional Organization for Standardization, Geneva.

ISO, 2004. ISO/IEC 9126-4:2004: Software Engineering—Product Quality—Part 4: Quality-in-Use Metrics.

International Organization for Standardization, Geneva.

ISO, 2007. ISO/IEC 24744:2007: Software Engineering—Metamodel for Development Methodologies. Interna-

tional Organization for Standardization, Geneva.

ISO, 2011. ISO/IEC 25010:2011: Systems and Software Engineering—Systems and Software Quality Require-

ments and Evaluation (SQuaRE)—System and Software Quality Models. International Organization for Stan-

dardization, Geneva.

Jansen-Vullers, M., Netjes, M., 2006. Business process simulation—a tool survey. In: CPN Tools Workshop.

Jureta, I., Mylopoulos, J., Faulkner, S., 2009a. A core ontology for requirements. Appl. Ontol. 4 (3–4), 169–244.

Jureta, I.J., Herssens, C., Faulkner, S., 2009b. A comprehensive quality model for service-oriented systems. Softw.

Qual. J. 17, 65–98.

Kassab, M., Ormandjieva, O., Daneva, M., 2009. An ontology based approach to non-functional requirements con-

ceptualization. In: 4th International Conference on Software Engineering Advances (SEA’09). IEEE Press,

New York, pp. 299–308.

Kayed, A., Hirzalla, N., Samhan, A.A., Alfayoumi, M., 2009. Towards an ontology for software product quality

attributes. In: 4th International Conference on Internet and Web Applications and Services (ICIW ’09). IEEE

Press, New York, pp. 200–204.

Kazman, R., Barbacci, M., Klein, M., Carriere, S.J., 1999. Experience with performing architecture tradeoff anal-

ysis. In: ICSE’99. ACM, New York, pp. 54–63.

Kelton, W.D., Sadowski, R.P., Sadowski, D.A., 2004. Simulation with Arena, second ed. McGraw-Hill, New

York.

Kim, E., Lee, Y., 2005. Quality Model for Web Services 2.0. OASIS.

Kim, S., Kim, D.-K., Park, S., 2010. Tool support for quality-driven development of software architectures.

In: ASE’10. ACM, Antwerp, Belgium, pp. 127–130.

Kitchenham, B., Pfleeger, S.L., 1996. Software quality: the elusive target. IEEE Softw. 13 (1), 12–21.

Krogstie, J., 1998. Integrating the understanding of quality in requirements specification and conceptual modeling.

ACM SIGSOFT Softw. Eng. Notes 23 (1), 86–91.

71References

http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0320
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0320
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0325
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0325
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0330
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0330
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0330
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0335
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0335
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0340
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0340
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0340
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0345
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0350
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0350
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0355
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0355
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0360
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0360
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0365
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0365
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0370
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0370
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0375
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0375
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0375
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0380
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0385
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0390
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0390
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0395
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0395
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0395
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0400
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0400
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0400
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0405
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0405
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0410
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0410
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0415
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0415
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0420
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0425
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0425

Lassing, N., Bengtsson, P., Bosch, J., Vliet, H.V., 2002. Experience with ALMA: architecture-level modifiability

analysis. J. Syst. Softw. 61 (1), 47–57.

Lauesen, S., 2002. Software Requirements: Styles and Techniques. Addison-Wesley, Reading, MA.

Lebbink, H.-J., Witteman, C.L.M., Meyer, J.-J.C., 2002. Ontology-based knowledge acquisition for knowledge

systems. In: Blockdeel, H., Denecker, M. (Eds.), BNAIC’02, pp. 195–202.

Leffingwell, D., 2011. Agile Software Requirements. Addison-Wesley, Reading, MA.

Lim, Y.-K., Stolterman, E., Tenenberg, J., 2008. The anatomy of prototypes: prototypes as filters, prototypes as

manifestations of design ideas. ACM Trans. Comput.-Hum. Interact. 15 (2)Article 7.

Looker, N., Xu, J., Munro, M., 2007. Determining the dependability of service-oriented architectures. Int. J. Sim-

ulation Process Model. 3 (1–2), 88–97.

Magoutas, B., Halaris, C., Mentzas, G., 2007. An ontology for the multi-perspective evaluation of quality in E-

government services. In: Wimmer, M.A., Scholl, J., Grönlund, Å. (Eds.), EGOV 2007. Lecture Notes in Com-

puter Science, vol. 4656. Springer, Berlin/Heidelberg, pp. 318–329.

Marzolla, M., Balsamo, S., 2004. UML-PSI: the UML performance simulator. In: QEST’04. IEEE, New York,

pp. 340–341.

Masolo, C., Borgo, S., 2005. Qualities in formal ontology. In: Hitzler, P., Lutz, C., Stumme, G. (Eds.), Workshop

on Foundational Aspects of Ontologies (FOnt 2005), pp. 2–16.

Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A., 2003. The WonderWeb Library of Foundational

Ontologies. WonderWeb Deliverable D18. Ontology Library (final). ISTC-CNR, Trento.

Matinlassi, M., 2005. Quality-driven software architecture model transformation. In: Proceedings of the 5thWork-

ing IEEE/IFIP Conference on Software Architecture. IEEE Computer Society, New York, pp. 199–200.

McCall, J.A., Richards, P.K., Walters, G.F., 1977. Factors in Software Quality, NTIS.

McManus, J., 2004. Managing Stakeholders in Software Development Projects. Butterworth-Heinemann, London.

Münch, J., Armbrust, O., Kowalczyk, M., Soto, M., 2012. Software Process Definition andManagement. Springer,

Berlin/Heidelberg.

OMG, 2003. UML Profile for Schedulability, Performance, and Time, version 1.0, Object Management Group.

OMG, 2008. Software Process Engineering Metamodel (SPEM) 2.0, Object Management Group.

Pastor, O., Molina, J.C., 2007. Model-Driven Architecture in Practice. Springer, Heidelberg.

Rodrı́guez, A., Fernández-Medina, E., Piattini, M., 2006. Capturing security requirements in business processes

through a UML 2.0 activity diagrams profile. In: Roddick, J.F., Benjamins, V.R., Cherfi, S., Chiang, R.,

Claramunt, C., Elmasri, R., Grandi, F., Han, H., Hepp, M., Lytras, M., Mišic, V.B., Poels, G., Song, I.-Y.,

Trujillo, J., Vangenot, C. (Eds.), ER 2006 Workshops and Tutorials. Lecture Notes in Computer Science,

vol. 4231. Springer, Berlin/Heidelberg, pp. 32–42.

Rozinat, A., Wynn, M., van der Aalst, W., ter Hofstede, A., Fidge, C., 2009. Workflow simulation for operational

decision support. Data Knowl. Eng. 68, 834–850.

Sanin, C., Szczerbicki, E., Toro, C., 2007. AnOWL ontology of set of experience knowledge structure. J. Universal

Comput. Sci. 13, 209–223.

Schneider, K., 2007. Generating fast feedback in requirements elicitation. In: Sawyer, P., Paech, B., Heymans, P.

(Eds.), REFSQ 2007. In: Lecture Notes in Computer Science, vol. 4542. Springer, Berlin/Heidelberg,

pp. 160–174.

Schneider, K., 2009. Experience and Knowledge Management in Software Engineering. Springer, Berlin/

Heidelberg.

Shekhovtsov, V.A., 2011. On the evolution of quality conceptualization techniques. In: Kaschek, R.,

Delcambre, L. (Eds.), The Evolution of Conceptual Modeling. Lecture Notes in Computer Science, vol.

6520. Springer, Berlin/Heidelberg, pp. 117–136.

Shekhovtsov, V.A., Mayr, H.C., Kop, C., 2013. Towards conceptualizing quality-related stakeholder interactions

in software development. In: Mayr, H.C., Kop, C., Liddle, S., Ginige, A. (Eds.), Information Systems:

72 CHAPTER 3 Harmonizing the Quality View of Stakeholders

http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0430
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0430
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0435
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0440
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0440
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0445
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0450
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0450
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0455
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0455
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0460
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0460
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0460
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0465
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0465
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0470
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0470
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0475
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0475
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0480
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0480
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0485
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0490
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0490
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0495
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0500
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0500
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0500
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0500
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0500
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0505
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0505
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0510
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0510
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0515
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0515
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0515
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0520
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0520
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0525
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0525
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0525
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0530
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0530

Methods, Models, and Applications. Lecture Notes in Business Infomation Processing, vol. 137. Springer,

Berlin/Heidelberg, pp. 73–86.

Sindre, G., Opdahl, A.L., 2005. Eliciting security requirements with misuse cases. Req. Eng. 10 (1), 34–44.

Snyder, C., 2003. Paper Prototyping: The Fast and Easy Way to Define and Refine User Interfaces. Morgan Kauf-

mann, San Francisco, CA.

Strauss, A.L., Corbin, J.M., 1998. Basics of Qualitative Research: Grounded Theory Procedures and Techniques,

second ed. Sage Publications, Thousand Oaks, CA.

Stuckenschmidt, H., Parent, C., Spaccapietra, S. (Eds.), 2009. Modular Ontologies: Concepts, Theories and Tech-

niques for Knowledge Modularization. Springer, Berlin/Heidelberg.

Susi, A., Perini, A., Mylopoulos, J., 2005. The tropos metamodel and its use. Informatica 29 (4), 401–408.

Sutcliffe, A., Ryan, M., 1998. Experience with SCRAM: a scenario requirements analysis method. In: ICRE’98.

IEEE CS Press, New York, pp. 164–171.

Tahvildari, L., Kontogiannis, K., Mylopoulos, J., 2003. Quality-driven software re-engineering. J. Syst. Softw.

66 (3), 225–239.

Tewoldeberhan, T., Janssen, M., 2008. Simulation-based experimentation for designing reliable and efficient web

service orchestrations in supply chains. Electron. Commerce Res. Apps. 7, 82–92.

Tian, J., 2004. Quality-evaluation models and measurements. IEEE Softw. 21 (3), 84–91.

Tolstedt, J.L., 2002. Prototyping as a means of requirements elicitation. In: SAE International Off-Highway Con-

gress (SAE Technical Paper Series), vol. 2002-01-1466.

Wagner, S., Deissenboeck, F., 2007. An integrated approach to quality modelling. In:WoSQ’07. ACM, NewYork.

Walia, G.S., Carver, J.C., 2009. A systematic literature review to identify and classify software requirement errors.

Inf. Softw. Technol. 51, 1087–1109.

Wang, X., Chan, C.W., Hamilton, H.J., 2002. Design of knowledge-based systems with the ontology-domain-

system approach. In: SEKE’02. ACM, New York, pp. 233–236.

Weinreich, R., Buchgeher, G., 2010. Integrating requirements and design decisions in architecture representation.

In: Babar, M.A., Gorton, I. (Eds.), ECSA’10. In: Lecture Notes in Computer Science, vol. 6285. Springer,

Berlin/Heidelberg, pp. 86–101.

Westland, J.C., 2002. The cost of errors in software development: evidence from industry. J. Syst. Softw. 62, 1–9.

Williams, L.G., Smith, C.U., 2002. PASA: a method for the performance assessment of software architecture.

In: 3rd Workshop on Software Performance, Rome, Italy. ACM Press, New York, pp. 179–189.

Zhu, L., Gorton, I., 2007. UML profiles for design decisions and non-functional requirements. In: Proceedings of

ICSE Workshop on Sharing and Reusing Architectural Knowledge (SHARK’07). IEEE Press, New York.

73References

http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0530
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0530
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0535
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0540
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0540
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0545
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0545
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0550
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0550
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0555
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0560
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0560
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0565
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0565
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0570
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0570
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0575
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0580
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0580
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0585
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0590
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0590
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0595
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0595
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0600
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0600
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0600
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0605
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0610
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0610
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0615
http://refhub.elsevier.com/B978-0-12-417009-4.00003-X/rf0615

	Part I: Human-Centric Evaluation for Systems Qualities and Software Architecture
	Chapter 3: Harmonizing the Quality View of Stakeholders
	Introduction
	3.1. Adopted Concepts of the UFO
	3.1.1. Selection of the Foundational Ontology

	3.2. Assessment and Related Concepts
	3.2.1. Specification-level concepts
	3.2.2. Execution-level concepts
	3.2.3. State of the Art: Addressing basic quality-related concepts

	3.3. The Harmonization Process
	3.3.1. Quality Subjects' positions in the harmonization process
	3.3.2. Process definition and harmonization levels
	3.3.3. Running example
	3.3.4. View harmonization process
	3.3.4.1. Stage 1: Harmonizing artifacts
	3.3.4.1.1. Artifact harmonization example

	3.3.4.2. Stage 2: Harmonizing property types
	3.3.4.2.1. Example of harmonizing property types

	3.3.4.3. Stage 3: Aligning quality views
	3.3.4.3.1. Quality view alignment example

	3.3.5. Quality harmonization process
	3.3.5.1. Substitution artifacts
	3.3.5.2. Rank-oriented and property-oriented harmonization. Expected property state
	3.3.5.3. Stage 1: Producing an initial example property state
	3.3.5.3.1. Example for producing the initial example property state

	3.3.5.4. Stage 2: Executing initial assessment and deciding on a negotiation
	3.3.5.4.1. Example of a negotiation decision

	3.3.5.5. Stage 3: Performing negotiations
	3.3.5.5.1. Example of negotiations

	3.3.6. State of the art: Addressing harmonization process activities
	3.3.6.1. Addressing organization sides
	3.3.6.2. Addressing quality subjects
	3.3.6.3. Generic process-based techniques
	3.3.6.4. Addressing harmonization activities

	3.4. Practical Relevance
	3.4.1. Empirical studies
	3.4.1.1. Conducting interviews
	3.4.1.2. Postmortem analysis
	3.4.1.3. Data processing
	3.4.1.4. Soundness factors

	3.4.2. Practical application
	3.4.2.1. The QuASE process
	3.4.2.2. QuOntology and QuIRepository
	3.4.2.3. Elicitation stage

	3.5. Conclusions and Future Research Directions
	3.5.1. Basic conclusions
	3.5.2. Future research and implementation directions

	Acknowledgment
	References

