
Implementing Tool Support for Analyzing
Stakeholder Communications in Software

Development

Vladimir A. Shekhovtsov, Heinrich C. Mayr, Matija Kucko
Application Engineering Group, Institute of Applied Informatics,

Alpen-Adria-Universität Klagenfurt,
Klagenfurt, Austria

{volodymyr.shekhovtsov,heinrich.mayr,mkucko}@aau.at

Abstract—The problem with communicated information
originated from stakeholders participating in software
development processes is related to the fact that such information
is not always available for analysis and reuse. As a rule, it is
collected in project repositories (such as issue or bug databases)
and only consulted “as-is”: such activities do not always satisfy
the analytical needs of the software companies. The goal of a tool-
supported QuASE approach presented in this paper is to allow
for different kinds of analysis of the available communicated
information, in particular, we support reuse of such information,
prediction of the characteristics of the elements of the
communication environment and the communicated information
itself, issuing targeted recommendations and supporting selecting
the preferred alternatives for decisions related to such
information or to the elements of the communication
environment. We describe the motivation for our approach,
supported analytical scenarios, modeling and ontological support
for analytical concepts, and the specifics of the implementation of
the analysis component of the end-user software tool.

Keywords—analysis; prediction; decision support; software
development; project repository; ontology; knowledge base

I. INTRODUCTION AND MOTIVATION

This paper is devoted to the implementation aspects of the
analytical components of the software tool developed as a
result of the QuASE (Quality Aware Software Engineering)
project established in a consortium with four Austrian software
companies. The motivation of implementing these components
lies in a fact that currently the information related to
communication between stakeholders in software development
processes (stored in such systems as Jira or Bugzilla) is often
not accessible for analysis. As a rule, it is only consulted “as-
is” in a form of natural language texts: such activities do not
always satisfy the analytical needs of the software companies:
the information is not reusable, it is not possible to predict

future behavior of the involved parties, no recommendations
based on past behavior could be provided, communication-
related decisions cannot be supported based on the outcomes of
similar decisions available from the past.

The tool-supported approach implemented as a result of the
QuASE project is aimed at two main goals: (1) managing
understandability of the communicated information and (2)
analyzing stakeholder communication in software development
processes. The motivational problem introduced above is
related to the second goal: in this paper, we provide the
description of the analytical components of the system, the
understandability management components addressing the first
goal were introduced in the previous publications [11, 12].

The QuASE approach is supported by the following
software components [12, 13]:

1. An interactive modeling tool (based on ADOxx meta-
modeling platform) which supports a domain-specific
language allowing the modelers to describe a site-
specific communication environment and the
communicated knowledge, and to specify a mapping
between this model and the project repositories
deployed at the particular site,

2. A set of utilities for converting the specified model into
ontological representation, and for acquiring
communication-related data from the mapped project
repositories into the knowledge base corresponding to
the specified ontology, and

3. An end-user web-based QuASE tool supporting
analytical scenarios on top of the established
knowledge base accessible through SPARQL queries.

The QuASE tool supports: (1) reuse of communicated
information; (2) issuing targeted communication-related
recommendations; (3) forecasting the values of attributes for
communication-related environment elements (such as the
communicating parties or the communicated pieces of
information); (4) providing suggestions with respect to
communication-related decisions. For implementing this
support, fundamental knowledge related to the communication
domain has to be gathered and stored in the QuASE knowledge
base: either automatically from the project repositories such as

The QuASE Project was sponsored by the Austrian Research Promotion
Agency in the framework of the Bridge 1 program; Project ID: 3215531

2015 IEEE Eighth International Conference on Software Testing, Verification
and Validation Workshops (ICSTW)
13th User Symposium on Software Quality, Test and Innovation (ASQT
2015)
978-1-4799-1885-0/15/$31.00 ©2015 IEEE

JIRA issue tracking databases, or interactively from knowledge
suppliers. The QuASE knowledge base is based on the QuASE
site ontology defining the site-specific communication
environment (the communicating parties, the documents which
store the communicated information etc.)

The rest of the paper is structured as follows. Section 2
provides the background information related to the modeling
and knowledge conversion components of the system, Section
3 introduces the basic concepts of the QuASE analysis support,
it is followed by a description of the analysis support in the
QuASE site model, ontology, and knowledge base in Section 4.
Section 5 is devoted to the description of the analytical
scenarios as implemented in QuASE tool, it also covers the
specifics of implementing the analytical support in the tool by
interacting with the Apache Mahout framework; it is followed
by conclusions, and the description of the future research.

II. QUASE SITE MODEL, ONTOLOGY, AND

KNOWLEDGE BASE: BACKGROUND INFORMATION

A. QuASE Core Knowledge Structures

Prior to describing the implementation of the QuASE
analysis support in detail, it is necessary to introduce the set of
QuASE core knowledge structures [13, 14]:

1. QuASE site: an owner of the given QuASE installation,
e.g. a software provider.

2. Context units: units having particular views on
communicated information, e.g. projects, organizations
and their departments, involved people (stakeholders)
etc. Context units are characterized by attributes and
can be connected to other units; a context configuration
e.g. could include the representation of the whole
organizational hierarchy for an IT company. The set of
context units can also include the categories of such
units (e.g. “Business stakeholder” or “IT person”)
making able creating the views on communicated
information belonging to such categories.

3. Content units: units shaping communicated
information originated from project repositories: they
serve as containers for such information or organize
such containers. Examples of content units are issues
and their sets, issue comments, and issue attribute
values. Content units can be related to context units.

4. Knowledge units: units encapsulating quality and
domain knowledge that is subject of communication
and harmonization; we described these concepts in
detail in [13], they are not directly used for analysis
support.

B. QuASE System Architecture

In an overview of the QuASE architecture we follow the
architectural description in [13] taking into account the
extensions introduced in the current implementation.

The site-specific configuration of the communication
environment is interactively defined as a QuASE site model in
the domain-specific visual modeling language QuASE site

DSL supported by a QuASE site editor tool implemented by
means of ADOxx framework. It provides the DSL support
based on the QuASE site metamodel.

Obtained as a result of the above activities, the QuASE site
model contains the description of the permitted structure of a
site-specific set of concepts describing the communication
environment (including context and content configuration) and
their correspondence to the project repository structures (e.g.
JIRA database tables). This model, by the means of QuASE
ontology builder utility, is transformed into the QuASE site
ontology and the QuASE repository mapping specification.
The representation of the QuASE site ontology obtained as an
output of the QuASE ontology builder utility describes the site-
specific set of environment concepts by means of OWL 2.

QuASE repository mapping specification controls the
execution of the QuASE knowledge base builder utility. It is
responsible for acquiring the raw project data directly from the
project repositories and obtaining non-repository data (e.g. the
values of attributes not represented in project repositories)
interactively from the users of these repositories through the
external data acquisition component of the QuASE tool.
QuASE site ontology forms the structural part (TBox in
description logics) of the QuASE knowledge base (QuASE
KB). The individuals comprising the ABox of this KB are
provided by the QuASE knowledge base builder utility based
on the raw project data.

QuASE tool includes components responsible for providing
services to the end users (including analysis support). All
interaction between this tool and the KB is performed through
an API referring only to the information from the QuASE
metamodel. By providing this API, it is guaranteed that the
code of the tool is decoupled from the particular site definition.

Besides end-user services, the current architecture of the
QuASE tool also provides external data acquisition
functionality. The information is obtained as a result of
interaction with the knowledge suppliers and then transferred
back to the knowledge base builder utility to be transferred into
OWL individuals combined with repository-based individuals
to form the QuASE knowledge base. The architecture of the
QuASE tool will be described in more detail in Section 5.

C. QuASE Site Model

QuASE site DSL was introduced in [13], here we outline its
basic concepts which are important for implementing the
QuASE analysis support.

 On the foundational level we defined Modeling Element
consisting of Attributes which specializes to Entity and
Relation; Entities can again consist of entities. Relations
consists of Perspectives connecting them to Entities; in turn,
Entities are related through Relations.

On the QuASE site level (Fig.1), we instantiate the
foundational concepts as metaclasses. Separate entity
metaclasses are defined to specify modeling constructs
corresponding to context units (Context Unit) and content units
(Content Unit), the corresponding “relation to itself”
metaclasses can be instantiated to connect modeling constructs
belonging to the same metaclass (e.g. the instances of Content

Unit Relation metaclass can connect the instances of Content
Unit), also relation metaclasses such as Context-Content
Relation can be instantiated to connect instances of different
entity metaclasses.

Fig. 1. Metamodel for the QuASE site DSL (from [11])

Fig.2 on the next page shows a snapshot of the user
interface of the QuASE site DSL editor tool displaying an
instance of the QuASE site model. We use colored boxes and
colored diamonds to denote entity-based and relation-based
constructs; relations have incoming and outgoing connectors.
Categories of constructs are distinguished by their background
color; for context-content relations, two colors are used
separated by the vertical line. The names of categories are also
shown in angle brackets. Attributes are specified using a
notation similar to the one used in UML class diagrams.

D. QuASE Site Ontology

To incorporate the QuASE site model into the structure of
the QuASE KB, it has to be transformed into computational
ontology representation based on OWL 2 by means of QuASE
ontology builder utility. It applies a set of rules to the XML-
serialized QuASE site model to generate corresponding OWL 2
constructs. In particular,

1. The set of metamodel-based OWL classes is included
in the ontology prior to processing the model elements:
ContextUnit ⊑ Entity ⊑ ModelingElement;

2. An entity model element is transformed into an OWL
class as a subclass of the class which represents the
entity’s meta-class: JiraUser ⊑ ContextUnit ⊑ Entity
⊑ ModelingElement,

3. A relation element is transformed into an OWL class
for the element: PersonCategory.Categorizes.JiraUser
⊑ Categorizes ⊑ ContextRelation ⊑ Relation ⊑
ModelingElement, a set of object properties for
perspectives and for the relation itself:
[source_for]PersonCategory.Categorizes.JiraUser ⊑
[source_for]ContextRelation ⊑ [source_for]Relation,
and a set of axioms connecting the resulting class and
its target entity classes through perspective properties;

4. Attributes are transformed into data properties and the
corresponding axioms connecting these properties to
the possessing classes.

More detailed treatment of these rules is included in [13].

E. QuASE Knowledge Base

The information specified in the site model is used to map
repository and external data into the QuASE knowledge base.
This knowledge base contains individuals belonging to QuASE
site ontology classes which are connected to other individuals
with site ontology object properties and to literal values with
site ontology data properties. To form the set of knowledge
base individuals from the project repository data, QuASE
knowledge base builder executes database queries specified in
the site model for entity and relation model elements and forms
the IRI for these individuals based on the returned information.

For an entity individual its IRI is formed using the value of
the id-designated column in the dataset returned as a result of
the execution of the query defined by the entity query attribute
(the name of this column is also specified as the entity
attribute) and the entity name: Jira-Issue-4312 : Jira-Issue ⊑
ContentUnit ⊑ Entity. Among data properties connecting such
individuals to literals is (1) the property holding the name of
the repository entity (e.g. the issue name): Jira-Issue-
4312.__name ⊑ Entity.__name, <Jira-Issue-4312, “Installation
problem”> : Jira-Issue-4312.__name and (2) the property for
its unique identifier (based on Entity.__id).

Relation individuals are formed according to the mapping
specification attributes defined for relation elements in the
model which determine the character of the connection: the
instances of “connect existing elements”-type relation are
formed by finding matches between the value of the foreign
key-designated column of the source entity query (the name of
this column is defined as the relation attribute in the site model)
and the value of the id-designated column of the target entity
query, whereas the instances of “use association query”-type
relation are formed based on the dataset returned as a result of
the execution of the association query specified for a relation
model element (the values of the columns in this dataset have
to match the values of the id-designated columns at both sides
of the relation).

Building the knowledge base is also possible in incremental
mode (KB synchronization). To support it, an attribute can be
specified for every entity element in the site model holding the
name of the last update timestamp column in the entity query;
such column is used to limit the data obtained from the project
repository to the rows changed since the last synchronization.

III. QUASE ANALYSIS SUPPORT: INTRODUCTION

A. QuASE Reuse and Analysis Support Scenarios

QuASE supports reuse and analysis scenarios where the
latter are further subcategorized into prediction,
recommendation, and decision support scenarios. In their
description we follow [14], modifying the list provided in that
paper to reflect currently implemented functionality.

The reuse scenarios are based on applying similarity search
techniques, in particular, content-based similarity search, where
the user selects the metrics of a given content unit (e.g. a
specific issue). The values of these metrics then are used for
the search of content units in the QuASE knowledge base, the
similarity distance of which is below a predefined threshold. It

is also possible to perform context-based similarity search
where the user looks for context units (e.g. stakeholders) close

to the given context unit; the similarity distance is calculated
based on a subset of attributes of the selected context unit.

Fig. 2. Fragment of a particular QuASE site model in ADOxx-based DSL editor

The user goal in the recommendation scenarios is to obtain
a set of recommendations based on the user reaction to the
recommendations issued in the past. The recommendations
could e.g. define the way of working with a given issue, or for
communicating with a particular stakeholder. We distinguish
behavior-related recommendations (describing the desired
communication behavior) and capability-related
recommendations (addressing user capabilities required to deal
with e.g. an issue.) As an example, a user might select an issue
and obtain in reply the recommendation that ‘a high level of IT
knowledge’ is required for dealing with this issue.

In the prediction scenarios the predictions are based on
historical data from past communications available in the
QuASE knowledge base. They support the selection of
communication strategies or issue handling schedules (based
on estimated processing times). Computing predictions starts
from the metric values of the given content or context unit.
Current QuASE implementation supports value prediction

scenarios where the user e.g. selects an attribute of the issue
and obtains the predicted (computed) value of this attribute.

In the decision support scenarios the goal is to obtain, for a
given decision case, recommendations based on prior decision
data: either as assessments of the current decision alternatives
or by ranking alternatives according to particular criteria.
Example: the user selects an issue and, as decision type
“selecting contact point for communication”; as a result, he
obtains a ranked set of alternatives for this decision extracted
from prior decisions made for similar issues.

B. Basic QuASE Analysis Concepts

The implementation of the analysis support in QuASE
applies machine learning techniques of Apache Mahout [6] to
the set of QuASE KB individuals: similarity search for
implementing information reuse, regression analysis for
predicting attribute values, and hybrid (partially supervised)
learning for recommendation and decision support.

Establishing similarity search and prediction support relies
only on accompanying the knowledge base individuals with
normalized metric values which can be used for calculating
similarity distances and building regression models used for
predictions. In the following section, the support for these
metric values will be described in detail.

Establishing recommendation and decision support also
relies on normalized metric values, but it also requires
extending QuASE site model, ontology, and knowledge base
with additional concepts: in particular an additional metamodel
element (Decision Unit) has to be introduced together with
corresponding relations, these elements will be described in the
following section.

While defining the recommender system in QuASE we
treat both recommendations and decisions as the items to be
recommended (analogous to product titles for online store
recommenders). For this problem statement, making decisions
and issuing recommendations can be reduced to the same
problem (with recommendations equivalent to decision
alternatives). In addition, we treat decision targets (e.g. context
or content units) as the objects to receive recommendations
(analogous e.g. to the users of the online recommender
system). We treat the process of connecting the particular
decision target (e.g. issue) and the particular decision outcomes
similarly to "liking" the particular alternative in the online
store, i.e. we show different decision outcomes to the QuASE
user and ask which one is true from that user’s point of view.

QuASE uses content-based recommendation algorithm
where, based on the available metric data, the system allows to
obtain the preferred decision outcomes for the incoming
decision target individuals (e.g. issues).

IV. IMPLEMENTING ANALYSIS SUPPORT IN QUASE

SITE MODEL, ONTOLOGY, AND KNOWLEDGE BASE

The initial support for analysis is defined on the metamodel
level by specifying the necessary elements of the metamodel
for the site DSL, these elements are then converted into
ontological representation, and then the corresponding
information is acquired from the project repositories and . The
following elements are specified on the metamodel level:
QuASE metrics, QuASE decision units, and decision-specific
QuASE relations.

A. QuASE Metrics

1) QuASE metrics in the site model
We define the QuASE metric as a special kind of attribute

applicable to context and content units (owner units): the
metrics accept numerical values and are ready to be used for
analysis; by defining the particular attribute as a metric, the
modeler informs the QuASE system that this attribute can be
selected to perform analytical activities (e.g. only the metrics
can be selected to perform similarity search, only the metric
values can be predicted, the recommendation and decision
support algorithms are also based on the values of the metrics).

The metric in the model is defined as a tuple <name, data
type, mapping mode, mapping data> where data type defines
the set of allowed values for the metric; QuASE supports

integer and numeric metrics; mapping mode [10] defines the
way of collecting the values of the metric while building the
knowledge base; mapping data contains additional information
necessary to perform value collecting, its semantics depends on
the mapping mode.

QuASE site DSL allows the modelers to define direct,
query-base, calculated, and interactive mapping modes.

The values for direct metrics are collected from the results
of the SQL query provided as a part of the owner unit
definition, the mapping data for such metric is the name of the
source column which has to be present in the query;

The values for query-based metrics are collected from the
results of the additional metric-defining SQL query provided as
its mapping data value. The query has to return a set of tuples
<id, value> where id corresponds to the value of the unique
identifier of the metric owner (to establish a connection
between the metric instance and the instance of its owner),
value corresponds to the value of the metric.

The values for calculated metrics are obtained as a result of
executing the special routines defined in the code of the
knowledge base builder utility; currently the only way of
locating such routines is by the name of their Java class (which
has to match the name of the metric combined with the name of
its owner). In future, we plan to utilize the scripting language
(such as Groovy) to allow for scriptable calculated metrics.

The values for interactive metrics correspond to the
information which is not available in the project repositories
and have to be additionally provided by the knowledge
suppliers by means of their interacting with the QuASE tool.

Among interactive metrics: (a) level metrics accept the
values defining the level of some characteristic, to specify the
value of such metric the user have to select from the list of
labels connected to numeric constants: (from “very high”
corresponding to 1, “high” – to 0.75, down to “very low” (0));
(b) attitude metrics are similar to the level metrics but reflect
the user’s attitude to some fact (the values range from “very
positive” (1), “positive” (0.75) down to “very negative” (0));
(c) input metrics accept arbitrary numeric values specified by
the user (the interaction is supposed to provide an input field
instead of a select list).

2) QuASE metrics in the site ontology and knowledge base
In the site ontology, the support for metrics is based on the

ontological concept of Attribute further specialized to Metric:
Jira-Issue.customer_attitude ⊑ IntegerMetric ⊑ Metric ⊑
Attribute ⊑ ModelingElement. Metrics are connected to their
owners with hasAttribute object property.

While building the knowledge base, to establish support for
analytical activities, every metric individual has to be
accompanied with properties connecting it to both absolute and
normalized values, and with a unique identifier of the metric
class: < Jira-Issue-4513.customer_attitude, 0.75 > : Jira-
Issue.customer_attitude.hasValue.

The values for direct metrics are obtained from the mapped
columns of the JDBC record set formed by the execution of the
entity query, the data for query-based metrics is obtained from

the separate record sets formed by execution of the metric-
defining queries, the data for calculated metrics is formed by
the code of knowledge base builder utility, and the values of
the interactive metrics, collected in the QuASE tool, are
obtained from its state provider component.

B. QuASE Decision Units: Explicit Support

1) Explicit model support for decision units
The explicit support for the decision units in the site DSL

allows the modeler to specify the corresponding model
elements directly in the model by means of the site modeler
tool. Four new modeling elements are introduced: Decision
Unit (based on the Entity meta-class) (examples on Fig.3 below
are labeled with (2), (4), (6), and (8); further in this section, the
numbers in parentheses will refer to the labels on the picture),
Decision Relation ((3), (5), (7), (12), and (13)), Context-
Decision Relation (10), and Content-Decision Relation (9) (all
based on the Relation meta-class);

Decision and recommendation support can be defined for
either Context Units or Content Units; further we will call such
units Decision or Recommendation Targets. For every decision
or recommendation target (further referred to as <target>), the
configuration shown on Fig.3 is supposed to be added to the
model. The depicted <target> is Jira-Issue (1).

Fig. 3. Explicit decision support in the site model

The chain of Decision Units starts from “<target> decision
category” (2), the “categorizes” relation (3) allows specifying a
hierarchy of categories for decisions; example of a category
can be “Communication-related issue decisions”.

The decision kind (which is related to a set of alternatives)
is defined as a “<target> decision kind” (4), examples of such
kinds can be “Selection of the communication channel”.
Decision kinds are related to decision categories by another
“categorizes” relation (5).

A particular decision kind defines as its outcomes a set of
alternatives of a class “<target> decision alternative” (6).
These alternatives are related to their decision kind via “defines
an outcome as” relation (7). The unique identifier (id) of the
alternative includes the id of its decision kind and its sequence

number (the existence of the alternative depends on the
existence of its kind). As an example, the “Select
communication channel” decision kind (id: ID1) defines its
outcomes as the following alternatives “Direct contact with
stakeholder” (id: ID1-1), “Contact through key user” (id: ID1-
2), “Contact through high-level manager” (id: ID1-3).

A fact of assessing the particular target by the particular
person with selecting the particular decision outcome is
represented by the instance of a class “target decision case”
(8). Four incoming relations are defined for this class:

1. “is a target for” relation (9) from <target> (1) e.g.
Jira issue;

2. “assesses” relation (10) from the assessor class (11);
the assessor is the Context Unit representing the user
performing the assessment, in the example case
depicted on Fig.4 it is a Jira user;

3. “is a kind for” relation (12) from the “<target>
decision kind” (4) representing the decision kind for
this particular decision case;

4. “is an outcome of” relation (13) from the “<target>
decision alternative” (6); representing the selected
outcome of the decision of the particular kind.

Only one decision outcome for the particular assessor, the
particular <target>, and the particular decision kind is allowed
(users cannot store the outcomes of the same decisions more
than once), as a result, the unique identifiers (ids) for decision
cases are formed from the ids of decision assessors (11),
decision targets (1), and decision kinds (4); they are used to
compose the IRIs of decision case individuals. E.g. the decision
case of selecting the outcome of the decision of the “Select
communication target” (id: ID1) kind by the user schwartz for
the issue with id of 29375 will have an id of schwartz-29375-
ID1, it can be connected to the outcome with the id of e.g. ID1-
2 (which means that the second alternative has been selected).

2) Explicit ontology and knowledge base representation
for decision units

To support communication-related decisions the following
classes are added as subclasses of Decision Unit: Decision
Category, Decision Kind, Decision Alternative, and Decision
Case. The corresponding model-based decision classes are
defined as their subclasses: Jira-Issue decision category ⊑
Decision Category, Jira user decision category ⊑ Decision
Category etc. Similar classes have to be also added for
recommendation support: Recommendation category etc.

The subclasses for the additional class Decision Target ⊑
Entity are entities which are the targets for decisions: Jira-Issue
⊑ Decision Target, Jira user ⊑ Decision Target etc. For
recommendation targets, Recommendation Target ⊑ Entity
class has to be introduced as well. The subclass of the
additional class Decision Assessor ⊑ Context Unit is a Context
Unit which corresponds to the persons able to assess the
decision cases: Jira user ⊑ Decision Assessor.

The introduced relation classes are Decision Relation and
Decision-Target Relation. Also, to simplify the connection to
Mahout, the additional object property is supplemented with

connecting the instances of Decision Case and Metric is added
into the ontology.

The knowledge base builder utility obtains the decision data
from the QuASE tool (state provider component) and uses it to
create necessary individuals and connect them with properties.

C. QuASE Decision Units: Implicit Support

The problem with adding the explicit analysis support into
the site model is that it is necessary to have the repeating set of
classes added to the model every time the modeler intends to
add support for decisions or recommendations. These classes
are parameterized by the target name: Jira-Issue decision
category, Jira-Issue decision kind and corresponding relations
for Jira-Issue, Jira user decision category for Jira user etc.

The solution for introducing implicit decision support into
the model is to eliminate decision units and decision relation
metaclasses from the metamodel used in the site modeler while
adding options "Enable recommendations" and "Enable
decision support" to Content and Context Units, so they can be
enabled for the model elements, e.g. for Jira user (Fig.4).

Fig. 4. Implicit model support for analysis

After that, during the generation of the ontology, the model
is transparently extended with all the necessary classes and
relations with the names auto-generated based on the name of
the model element (<target>) with enabled support in the
model, and, as a result, the generated ontology does not differ
from the ontology generated from the model with the explicit
support, but the model is kept less cluttered.

In addition, the options “Represents repository users” and
“Represents QuASE users” are added to Context Units; they
allow specifying in the model, which model-level Context Unit
class can serve as an assessor in auto-generated model
fragments (Fig.5).

Fig. 5. Defining Assessor class in the model

The implementation of this approach uses a fragment of the
serialized site model (in XML format) containing the necessary

decision classes and relations as a template with placeholders
corresponding to the information derived from the target class:
this template is instantiated by means of Velocity template
engine (http://velocity.apache.org) every time the decision-
enabled class is encountered by the ontology builder and
knowledge base builder, the fragment of the serialized model is
generated out of it and integrated with the rest of the model.

V. QUASE TOOL: IMPLEMENTING ANALYSIS SUPPORT

A. QuASE Tool Architecture: Background Information

In the description of the QuASE tool architecture we follow
[10], restricting ourselves with the components necessary for
analysis support. The tool consists of the components
belonging to three application tiers.

Data storage tier handles storing the data and knowledge
into two categories of storage: (1) the storage for QuASE
knowledge base; this category of storage is implemented by
means of Jena TDB (http://jena.apache.org/documentation/tdb)
triple store which provides a SPARQL query interface by
means of Jena SPARQL endpoint; (2) QuASE internal data
storage supported with relational database (exemplified by
MySQL in the default configuration of the tool).

Application logic tier handles the operations defined on the
available knowledge and the administrative logic. It consists of
the following categories of components: (1) data access layer
(encapsulates details of accessing data storage tier); (2)
functionality modules (implementing main tool functionality
such as analysis support); (3) API module (serves as an
interface of the whole tier to be used by the web application
tier; based on embedded Jetty web-server accessible through
the REST interface); (4) data model (implementing storage-
independent data model shared among other modules as a set
of wrappers for individuals, data and object properties fetched
from the knowledge base). In this paper further we will
describe the functionality module responsible for analysis.

Web application tier consists of a rich web application
based on AngularJS library integrated with plugin-based
extension of the particular issue management system (e.g. Jira
plugin [5]). It interacts with the embedded server through the
REST API, provided by API module. The internal structure of
the web application corresponds to the structure of functional
modules in application logic tier. The layer implements
primary security checks and input data validation.

B. QuASE Tool: Analytical Scenarios Support

In this subsection, we describe the current end-user support
of analytical scenarios implemented in QuASE tool. We
illustrate these scenarios with the screenshots of the current
version of the tool.

Prior to performing analytical activities, it is necessary to
select the target individual for such activities. QuASE tool
interface for the target selection is depicted on Fig.6: it is
possible to select the class for the selected item (the available
classes depend on the selection of the corresponding “support”
option in the site model), then the target individual has to be
selected from the list (with keyboard-based name lookup).

Fig. 6. Target selection interface of the QuASE tool

QuASE tool interface for similarity search is depicted on
Fig.7: after selecting the target individual, the tool allows for
selecting the subset of the relevant metrics, the list of results

shows the values of these metrics for the target individual and
for the list of the obtained similar individuals ordered by
similarity distance.

Fig. 7. Similarity search interface of the QuASE tool

QuASE tool interface for value predictions is depicted on
Fig.8: after selecting the prediction target, the tool again allows
for selecting the subset of the relevant metrics, the predicted

values of these metrics will be available for the user after
selecting the appropriate action.

Fig. 8. Value prediction interface of the QuASE tool

QuASE tool interface for recommendation support is
depicted on Fig.9. After selecting the recommendation target
individual, the tool allows for selecting the recommendation

kind out of the list of the kinds relevant for this target and then
obtaining the list of preferred recommendations of this kind
ordered by certainty rank.

Fig. 9. Recommendation support interface of the QuASE tool

The interface for decision support is similar to the interface
for recommendation support, the obtained results show ranked
list of preferred decision alternatives.

Data collection subsystem allows the knowledge supplier to
specify the data for decisions related to the selected target
(Fig.10): after selecting both decision target and assessor, the

list of appropriate decision kinds is shown to the user together
with the information about the history of the selected
alternatives. The tool then allows to select the decision
alternative for every available decision kind and save the
choice. Recommendation assessments are collected similarly to
the decision data.

Fig. 10. Collecting decision data in the QuASE tool

To collect the values for interactive attributes, QuASE tool
includes the functionality depicted on Fig.11. After selecting
the individual, the list of available interactive attributes
becomes available, the controls used in this list depend on the

interaction type defined for the attribute (on Fig.11, customer
attitude attribute is of type “attitude”, “customer satisfaction”
attribute – of type “level”.)

Fig. 11. Collecting values for interactive attributes in the QuASE tool

C. QuASE Tool: Implementing Similarity Search

In this section, we describe the implementation of
similarity search in QuASE tool as a result of interaction
with the Mahout framework. The input for the similarity

search procedure is a data structure defining entities and their
corresponding metrics.

The similarity search is implemented on top of three
Mahout interfaces: (1) the DataModel implementation

queries the KB to retrieve entities and metrics belonging to
these entities, these queries utilize Jena SPARQL endpoint to
get the requested individuals; (2) the UserSimilarity
implementations provide similarity measures used for
calculating the distance between the queried entity and other
entities based on the metric data from the provided
DataModel; (3) the UserNeighborhood implementation uses
the UserSimilarity to find entities similar to the queried
entity: in QuASE, the NearestNUserNeighborhood
implementation is used which finds n closest entities.

The output of the similarity search routine is the data
structure containing entities sorted by their similarity to the
queried entity, this structure is transferred to the web
application layer via QuASE API, that layer then renders it
by means of AngularJS UI rendering functionality.

D. QuASE Tool: Implementing Decision Support

The input for recommendation procedure is the data
structure containing decision targets (content units or context
units) and their metrics.

The decision support is implemented on top of the
implementations of AbstractVectorClassifier component of
the Mahout framework that allows training the classification
model and classifying the production data with the trained
model. For each decision kind a separate classification model
is trained. The training of the model is performed by
providing the following training data: (1) the predictor
variables containing metrics of all decision targets connected
to the respective decision kind; (2) the target variables
containing the outcomes (decision alternatives) of the
decision cases connected to the respective decision kind.
Classifying production data using the trained classification
model is performed by querying the classification model
using the predictor variables of the production data (queried
decision target and metrics) in order to retrieve the probable
target variables (suggested decision alternatives and the
classification probabilities for each alternative).

The output of the procedure is the set of decision
alternatives sorted by their classification probability.

VI. RELATED WORK

The QuASE approach belongs to the category of
solutions that facilitate reusing and analyzing the
development knowledge [8, 9] based on applying knowledge
management techniques to software engineering [1, 2].
Among these, from the point of view of addressed software
process qualities, we can distinguish solutions separately
addressing decision support quality [7]. Specific approaches
implementing techniques for analysis of the communicated
information in software development are provided in [3, 4].

The advantage of the QuASE approach is that it aims at
an integrated solution that (1) targets reusability of
communicated information, prediction of the future
communication behavior, as well as decision quality, (2)
handles the analysis based on the attributes of the fragments
of communicated information contained in project
repositories, as well as provided by the knowledge suppliers.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we described the implementation of the
analysis support in the QuASE software solution. The
proposed approach facilitates effective communication in the
software process by making possible analyzing the properties
of communicated information, and learning from past
communication experience. Experiences in rolling out the
current version of the system to the partner companies
showed that our approach scales well and is flexible enough
to be adapted to different communication environments.

Future direction for extending the analysis support in
QuASE are related to defining and implementing the support
for value-based and decision-based what-if scenarios [14]
and for better integration with Jira and other development
support systems available in industry.

REFERENCES

[1] M. A. Babar, T. Dingsøyr, P. Lago, and H. van Vliet, Eds., Software
Architecture Knowledge Management: Theory and Practice.
Springer, 2009.

[2] F. O. Bjørnson and T. Dingsøyr, "Knowledge management in
software engineering: A systematic review of studied concepts,
findings and research methods used," Information and Software
Technology, vol. 50, pp. 1055-1068, 2008.

[3] P. Heck and A. Zaidman, "An analysis of requirements evolution in
open source projects: Recommendations for issue trackers," in
Proceedings of the 2013 International Workshop on Principles of
Software Evolution, 2013, pp. 43-52.

[4] B. Kenmei, G. Antoniol, and M. Di Penta, "Trend analysis and issue
prediction in large-scale open source systems," in 12th European
Conf. on Software Maintenance and Reengineering, 2008, pp. 73-82.

[5] J. Kuruvilla, JIRA 5.x Development Cookbook: Packt Publish., 2013.

[6] S. Owen, R. Anil, T. Dunning, and E. Friedman, Mahout in Action:
Manning, 2011.

[7] G. Ruhe, "Software engineering decision support–a new paradigm for
learning software organizations," in Advances in Learning Software
Organizations: Springer, 2003, pp. 104-113.

[8] K. Schneider, Experience and Knowledge Management in Software
Engineering. Berlin-Heidelberg: Springer, 2009.

[9] N. Sharma, K. Singh, and D. Goyal, "Can Managing Knowledge and
Experience Improve Software Process?-Insights from the literature,"
Research Cell: An International Journal of Engineering Sciences,
vol. 4, pp. 324-333, 2011.

[10] V. A. Shekhovtsov and H. C. Mayr, "Managing Quality Related
Information in Software Development Processes," in CAiSE-Forum-
DC 2014, CEUR Workshop Proceedings, vol. 1164, 2014, pp. 73-80.

[11] V. A. Shekhovtsov and H. C. Mayr, "Towards Managing
Understandability of Quality-Related Information in Software
Development Processes," in ICCSA 2014, Part V., LNCS, v.8583, B.
Murgante, S. Misra et al., Eds.: Springer, 2014, pp. 572-585.

[12] V. A. Shekhovtsov, H. C. Mayr, S. Ianushkevych, M. Kucko, V.
Lubenskyi, and S. Strell, "Implementing tool support for effective
stakeholder communication in software development – a project
report," in Anwenderkonferenz für Softwarequalität Test und
Innovation - ASQT 2014 Wien: ÖCG, 2015, in print.

[13] V. A. Shekhovtsov, H. C. Mayr, and C. Kop, "Facilitating effective
stakeholder communication in software development processes," in
CAISE'2014 Forum Post-proceedings, S. Nurcan and E. Pimenidis,
Eds.: Springer, 2015, in print.

[14] V. A. Shekhovtsov, H. C. Mayr, and V. Lubenskyi, "QuASE: A Tool
Supported Approach to Facilitating Quality-Related Communication
in Software Development," in QUATIC 2014, A. R. da Silva, A. R.
Silva et al., Eds.: IEEE, 2014, pp. 162-165.

