

MQuASE

View Harmonization in Software Processes: From the Idea to QuASE

Workshop: Software-Prozesse und -Produkte im Licht kultureller Unterschiede – INFORMATIK 2016

Vladimir A. Shekhovtsov und Heinrich C. Mayr

Institut für Angewandte Informatik (AINF), Alpen-Adria-Universität Klagenfurt, Austria

> Volodymyr.Shekhovtsov@aau.at Heinrich.Mayr@aau.at

Initial motivation

Motivational problem

- To succeed, software development processes require a smooth communication between the different parties involved, especially developers and business stakeholders
 - In particular, they need to have a common understanding of the quality to be possessed by the software under development
- Problem: people often cannot communicate effectively because of having different cultural, professional and educational background

Addressing the motivational problem

- Enable effective communication between parties by harmonizing their quality views
- Manage communicated quality-related information in a way that allows for easy access and analysis

2012: initial QuASE proposal

The ontology

- incorporates the knowledge about quality conceptualization
 domain (the approach only deals with quality-related information)
- is a sole source for harmonization and analytical activities
 - understandability management, knowledge reuse, prediction, decision support
- is built by means of ontology engineering methods

2014-2015: evolving the concepts

Limitations of the special-purpose ontology

- Communicated information varies from company to company
 - has to be separately configurable for the particular deployment site
- Communicated information to be converted into knowledge is stored in project repositories (e.g. Jira databases)
 - No instructions for conversion in the quality communication domain ontology
- Direct ontology modification is a problem (too technical)

Scope limitations (for small-to-medium size IT companies)

- Not productive to limit the scope to harmonizing quality-related communications
 - the subset of the quality-related information in the project repository is limited
 - stakeholders prefer to delegate quality-related communications to the IT people

Solution redesign

- Based on a knowledge-oriented representation of the communicated information collected in project repositories
- Targeting the whole volume of communicated information
 - Making possible to filter it by topic (e.g. by quality characteristic)

QuASE implementation concepts (evolved)

■ **Generic:** covering different categories of communicated information

- **Site:** the deployment configuration for QuASE
- Context units: projects, organizations, involved people (stakeholders) etc.
- Content units: issues, requirement specifications etc.
- Knowledge units: related to the sources of understandability conflicts and ways of their resolution
 - Representation units: plain text fragments, diagram elements
 - **Resolution units:** explanations, external references etc.
 - Ontological foundation units: (domain-related) concepts and facts
- Content units possess capabilities regarding knowledge units

QuASE system architecture

- The ontology is generated based on the site model
 - defined in the modeling tool (based on ADOxx metamodeling framework)

The knowledge base is a set of individuals corresponding to the

QuASE DSL: metamodeling hierarchy

QuASE Site Modeler: using QuASE DSL

QuASE Site Modeler: mapping repositories

QuASE Site Modeler: specifying metrics

QuASE Site Modeler: site specifications

QuASE Tool: understandability management

QuASE Tool: analysis (reuse support)

QuASE Tool: Jira integration

Embedding "mini-QuASE" into Jira artifact handling pages

QuASE Tool: harmonizing quality views

2015-2016: QuASE experiences

QuASE current status

- QuASE Tool 1.0 released; demo at http://quase-ainf.aau.at:8080
- Installed at the sites of two consortium partners
- Jira interface is preferred as more convenient

QuASE experiences: scalability

Partner	Total # of projects	Total # of Jira issues	Collecting period	Knowledge base size	Minimal response time
Partner 1	50	9300	7 years	1,7*10 ⁶ axioms	0,2 sec (very good)
Partner 2	30	26000	5 years	1,9*10 ⁶ axioms	0,5 sec (good)

QuASE experiences: coverage of project artifacts

Partner	# of Jira- based artifacts	# of user- supplied artifacts	Extension ratio for artifacts	Number of Jira-based metrics	Number of user-supplied metrics	Extension ratio for metrics
Partner 1	18	4	0,22	16	67	4,18
Partner 2	14	3	0,21	10	61	6,1

QuASE: knowledge-based integrated solution

- The data from a project repository is immediately converted into knowledge available for understandability management and analysis
- The conversion is controlled by a flexible mapping (based on DSL)
 - it allows large amounts of existing data to be the subject of applying these techniques
- The QuASE system can be seen as a bridge which connects
 - end users
 - the data in project repositories
 - the (extendable) set of machine learning and NLP techniques

QuASE: benefits

The business stakeholders

are able to express their wishes and complaints in a way that could be understood by developers without the need to learn the "tech-talk"

The IT people

are able to express their view of the prospective system in a way that is accessible for the particular business stakeholder without the need to "unlearn" their "tech-talk"

The developers together with project managers

 are able to learn how to deal with the particular customer from the past communication experience with this or similar customers

Current continuation and future work

- Architectural solution: adapting to other projects (e.g. HBMS)
 - saving development efforts

- View harmonization problems in other domains
 - not limited to software development
- Enhancing the understandability management support
 - more advanced terminology specification and translation techniques

Thank you for your attention!

