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Abstract. Effective communication in software development is impaired when
parties perceive communicated information differently. To address this problem,
the project QuASE has been established. It aims at a solution that supports under‐
standability and reusability of communicated information as well as the quality
of decisions based on such information. In this paper, we focus on the architectural
aspects of the QuASE system and on its knowledge base which consists of two
ontologies: a site ontology defining the site-specific communication environment,
and a “quality ontology” that incorporates all knowledge necessary for supporting
communication. We describe the overall architecture of the system, introduce the
ontologies as well as their interplay, and outline the approach for gathering
knowledge necessary to form the QuASE site ontology.
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1 Introduction

Software development processes require a continuous involvement of the affected busi‐
ness stakeholders in order to be successful (this requirement, in particular, is reflected
by the ISO/IEC standard for software life cycle processes [9]). A prerequisite of such
involvement is establishing an appropriate communication basis for the different parties.
In particular, such a basis is needed for coming to terms and agreements on the quality
of the software under development. Without this, quality defects are often detected only
when the software is made available for acceptance testing.

Clearly, besides of enabling effective communication, the communicated quality-
related information has to be managed properly and made available during the software
development lifecycle; moreover, as past-experience may help to take the right deci‐
sions, such information should be provided in a way that allows for easy access and
analysis.

The QuASE project1 [22–29] aims at a comprehensive solution for these issues
(Fig. 1). In particular, this solution will provide support for managing (1) the

1 QuASE: Quality Aware Software Engineering is a project sponsored by the Austrian Research
Promotion Agency (FFG) in the framework of the Bridge 1 program; Project ID: 3215531.
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understandability of quality-related communicated information, (2) the reusability of
that information, and (3) the quality of decisions based on that information.
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Fig. 1. General activities of the QuASE approach

Figure 1 presents different support scenarios.

1. User A and B use the QuASE tool to achieve a common understanding of some
aspects of a software under development (SUD) that are described in a document X.
In this scenario, the QuASE knowledge base (QuASE KB) provides the means of
improving the understandability [25] of the document by translating or explaining
its content where needed. Figure 1 shows the case where a source document XA of
user A is transformed into a version XB that can be understood by B. Clearly, the
translations/transformations can act in both directions.

2. User A uses the QuASE tool for decision support. As a means of such support,
QuASE KB facilitates analysis of previous communications and the parties involved
there-in; such information may be reused to improve the future communications, for
predicting particular attributes, or for supporting decisions on the strategy of commu‐
nication with the given party in the given context.

For supporting such scenarios, fundamental knowledge related to the communication
domain has to be gathered and stored in the QuASE KB. There are two strategies: (1)
knowledge supplier enters the data into the KB; (2) it is filled automatically from the
project repositories e.g., the JIRA issue tracking database.

In the QuASE KB, the information about the given communication environment
(who communicates, which documents store the communicated information etc.) has
to be separated from the information about the knowledge being communicated; the
latter can contain the set of core notions acting as a glue between the knowledge specific
to different parties. This assures that the views of communicating parties can be
harmonized [22].
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The QuASE KB, therefore, consists of two parts:

1. QuASE site ontology: defines the site-specific communication environment;
2. QuOntology: contains knowledge about/around the communicated information

(both common and site-specific).

The QuASE data acquisition process and the understandability management activities
have been presented in previous papers [24, 25]. In this paper, therefore, we focus on
the architectural aspects of the whole QuASE system, the QuASE KB and its knowledge
structures.

The paper is structured as follows. Section 2 introduces the QuASE KB with its
two parts and explains their features as well as their interplay. Section 3 continues with
a description of the overall generic architecture of the QuASE system and the QuASE
KB. It explains how other modules (e.g., QuASE site ontology generator, QuASE
QuOntology generator, data acquisition engine etc.) work together. Furthermore
Sect. 3 explains two alternative QuASE KB implementation strategies. Section 4
focuses on the support for gathering knowledge necessary to form the QuASE site
ontology. After a short discussion of related work in Sect. 5, the paper concludes with
a summary and an outlook on future research (Sect. 6).

2 Knowledge Structures for Representing the Communication
Environment and the Communicated Information

We distinguish the structures representing (1) the knowledge about the communication
environment (such as the communicating parties, the documents containing communi‐
cated information etc.) and (2) the communicated knowledge itself (concepts and facts
being communicated, related information). In establishing such structures, we aimed at
the following goals: (a) flexibility: the permitted structures have to be easily adapted to
the particular deployment site; (b) support for understandability management and anal‐
ysis activities.

2.1 Project Repositories

Prior to defining the knowledge structures, it is necessary to enumerate the possible
sources of data corresponding to these structures. Software development projects, as a
rule, keep communicated information within project repositories such as (1) project
databases controlled by issue management systems (IMS), e.g., JIRA [11], MantisBT
[6] and others; such databases contain communicated information in form of issues
(generalizing bug reports or feature requests) and related discussions; (2) file-based
repositories containing meeting minutes, requirement and design specifications etc.;
these files are usually kept in some kind of a directory tree; (3) wiki-based systems.

Consequently, QuASE considers these types of repositories as sources of informa‐
tion and therefore provides data acquisition interfaces to them.
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2.2 QuASE Site Ontology

The data collected from project repositories are interpreted and mapped into the QuASE
KB. Figure 2 depicts the high-level structure of the QuASE site ontology (in UML-like
notation) which consists of the following key concepts:

1. site: owner of the given QuASE installation, e.g. a software provider.
2. context: units having particular views on communicated information, e.g. projects,

organizations and their departments, involved people (stakeholders) etc. Context
units are characterized by context attributes and can be connected to other units; a
context configuration, for example, could include the representation of the whole
organizational hierarchy or the whole portfolio of projects defined for a particular
IT company. In addition, the set of context units can include the categories of such
units (i.e. “IT company”, “Business stakeholder”) as it is possible to define the views
on communicated information belonging to such categories (i.e. the view on quality
belonging to IT companies).

3. content: units shaping communicated information originated from project reposito‐
ries: they serve as containers for such information or organize such containers.
Examples of content units are issues and their sets, issue attribute values, and
requirement specifications. Content units can be related to context units.

4. knowledge: units encapsulating quality and domain knowledge that is subject of
communication and harmonization. Every QuASE knowledge unit is a triple (o, v, r)
composed of the following components:
(a) ontological foundation: a reference to the conceptualization of the particular

piece of quality or domain knowledge through ontological means: such concep‐
tualizations form a modular ontology (QuOntology) providing a framework for
translating between world views.

(b) representation: the representation of the knowledge unit in a format that could
be perceived by the communicating parties (e.g. plain text). Representation
units are contained in content units and can be connected to each other.

(c) resolution means: the means of resolving understandability conflicts related to
the particular knowledge unit (such as explanations or external references).
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Fig. 2. Base structure of the QuASE site ontology

Context units possess capabilities to deal with knowledge units; in particular, these
capabilities could refer to the ability of understanding a given knowledge unit at hand
(i.e. its representation); or of explaining a knowledge unit using resolution means.
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2.3 QuOntology

QuOntology covers all knowledge that has/can be communicated in the respective envi‐
ronment. Initial research on QuOntology has been published in [28], whereas the current
version of the relevant conceptualizations is presented in [22]. Figure 3 shows the key
components of that ontology as well as its relation to the site ontology.
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Fig. 3. Organization of QuOntology

QuOntology is organized in three layers [see also Fig. 3]:

1. QuOntology core represents a stable subset of the knowledge available from research
and industrial practice; it does not depend on the particular problem domain. We use
the Unified Foundational Ontology (UFO) [7, 8] as a foundation for QuOntology
core; the motivation for this selection is provided in [22].

2. Domain ontologies [8] represent the specifics of the particular problem domain
which is addressed by the given software under development (finance, oil and gas
etc.); as a part of the project, we implement for this layer a Domain Ontology for
software quality [22].

3. Context ontologies represent the knowledge related to particular components of the
QuASE context: they contain organization-specific, project-specific etc. concepts.
As a part of the project, we implement for this layer ontologies for business-specific
and IT-specific views on quality.

As both QuASE site ontology and QuOntology are specialized ontologies supporting
only the concepts depicted in Fig. 3, we propose to allow knowledge suppliers to use
for their definition domain-specific visual modeling languages with limited set of
constructs which are easier to understand and learn than ontology languages such as
OWL. The models defined by means of these languages are then transformed into
specific ontology instantiations. The process of specifying such models and transforming
them into ontological format is described in the following section.

3 QuASE System Architecture

Figure 4 gives an overview of the QuASE system architecture. The components are
described one by one in the following sections.
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Fig. 4. Generic QuASE system architecture

3.1 Architectural Components and Their Interaction

The site-specific configuration of the communication environment is interactively
defined as a site model in the domain-specific visual modeling language site DSL
supported by a site editor tool. Such model can be also predefined by the supplier of
the system based on the information collected on site. The site editor provides the DSL
support based on the QuASE site metamodel; this support also uses the definition of
the source project repository to enable defining the correspondence between QuASE
concepts and this repository.

Obtained as a result of the above activities, the site model contains the description
of the permitted structure of the site-specific set of concepts related to the communication
environment (context and content configuration together with the knowledge elements)
and their correspondence to the project repository structures (e.g. JIRA tables). This
model, by the means of QuASE site generator, is transformed into the QuASE site
ontology (introduced in Sect. 2) and the QuASE repository mapping specification. The
site DSL and the corresponding editor are described in Sect. 4 together with a partial
example of the site model.
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The representation of the site ontology obtained as an output of the site generator
describes the site-specific set of environment concepts by means of OWL 2. The trans‐
formation between the site model and the site ontology again is described in detail in
Sect. 4.

QuASE repository mapping specification controls the execution of the QuASE data
acquisition engine. The process of data acquisition is described in detail in [24]. In
particular, this engine is responsible for the following functionality:

1. acquiring the raw project data directly from the project repositories (both IMS-
controlled project databases and file-based repositories)

2. obtaining the non-repository data (e.g. the values of a content unit or context unit
attributes not represented in project repositories) interactively from the users of these
repositories through the extended IMS interface.

QuOntology construction is performed similarly to the construction of the QuASE site
ontology. A knowledge supplier interacts with the QML editor tool supporting a visual
modeling DSL (Quality Modeling Language, QML); QML is based on a metamodel that
reflects knowledge unit configuration from the QuASE site model. By means of this
tool, the supplier creates a QML model which is then transformed into an OWL 2 repre‐
sentation of QuOntology. QuOntology could also reuse the existing knowledge by
importing external domain ontologies. The description of QML and the process of
constructing QuOntology will be presented in a separate publication.

Both QuASE site ontology and QuOntology are combined to form the structural part
(TBox in description logics) of the QuASE KB. The individuals comprising the ABox
of this KB are provided by the QuASE data acquisition engine based on the raw project
data. An approach to defining QuASE KB architecture is described in Sect. 3.2.

QuASE tool includes components responsible for providing understandability and
decision support to the end users. All interaction between this tool and the KB is
performed through an internal API referring only to the information from the QuASE
metamodel; these API calls transparently form and execute SPARQL queries to KB and
return the data based on their results. By providing this API, it is guaranteed that the
code of the tool is decoupled from the particular site definition; this definition is used
as the set of ontology individuals treated as the data structures by the tool code.

3.2 Defining QuASE KB Architecture

We used an architectural approach to define QuASE KB (Fig. 5) based on transparent
ontology storage: the ontology ABox is explicitly formed by the QuASE data acquisition
engine as a set of individuals corresponding to the classes defined in the QuASE TBox.
Together TBox and ABox form an OWL 2 ontology which is then transparently stored
into the triple store; we are using the capabilities of the Jena framework (Jena TDB triple
store, http://jena.apache.org/documentation/tdb/) to implement this storage; all queries
are handled by the SPARQL engine.

The advantage of this approach is the simplicity of the architecture: only the ontology
has to be formed; the mapping between this ontology and the permanent storage is
provided by TDB transparently. Another advantage is the maturity of the supporting
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technology (Apache Jena, and, in particular, TDB storage solution, are currently widely
used in both academia and industry).

While considering this approach, the performance and scalability of such configu‐
ration were under question, as achieving the optimal performance of ontological
reasoning over the database-backed ontology is still an open research challenge. But
we ultimately decided in favor of it after achieving an acceptable performance of the
QuASE site KB populated from the industrial-size project repository of one of the
consortium partners (collected since 2008: over 8000 issues resulting in OWL 2 KB
containing 1.8 million axioms).

The rejected alternative was based on using the OBDA (Ontology-Based Data
Access) techniques [15] where the OBDA reasoner hides the independently configured
relational database (QuASE DB) behind the ontological interface: this approach was
rejected as (1) the OBDA solution turned out to be more difficult to configure and less
capable (e.g. the available OBDA reasoners are restricted in OWL support with OWL2
QL which is not sufficient for expressing QuASE site ontology and KB), and (2) accept‐
able performance was achieved using the transparent storage approach.

3.3 QuASE System Usage Scenarios

In this section, we provide examples of using the proposed architecture to facilitate
communication between stakeholders in a software project. We distinguish site defini‐
tion, knowledge acquisition, and QuASE tool usage scenarios.

1. Site and knowledge definition scenario:
(a) The knowledge supplier K (an employee of the company E) creates the E’s site

model using the QuASE site modeler tool. Then he/she initiates the site ontology
generation for E based on the specified model.

(b) K extends the E’s site model adding the repository mapping specification refer‐
ring to E’s JIRA installation.

(c) K provides QuOntology concepts, representations, and explanations using
QML editor and initiates the generation of QuOntology.

(d) As a result, the E’s site ontology, QuOntology, and repository mapping speci‐
fication are created; the system becomes ready to acquire knowledge.
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Fig. 5. Knowledge base architecture based on transparent ontology storage
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2. Knowledge acquisition scenario – incremental case:
(a) The Jira user U creates the new issue XU and adds extra information (e.g. attrib‐

utes and related decisions with preferred alternatives) to XU based on E’s site
model and mapping information, the information is stored in E’s local QuASE
database (by QuASE Jira plug-in) and E’s project repository (by Jira).

(b) K initiates the process of populating the site KB based on the site ontology and
QuOntology specifications, the repository mapping specification, XU data from
the project repository, and XU extra data contained in the QuASE internal DB.

(c) As a result, the QuASE site KB becomes synchronized with the current state of
the project repository and the extra information specified by U.

3. QuASE tool usage scenarios. A complete set of usage scenarios for the QuASE tool
is defined in [29], so here we limit ourselves only with a short outline of the instan‐
tiation of two basic scenarios presented in Sect. 1:
(a) Understandability support: Users A and B use the QuASE tool to achieve

common understanding of a new issue XA. The issue is transferred into the
QuASE tool, where the target context is set to B. After that, XA’s text is parsed
by the tool and the problematic terms are looked up in the QuASE KB via
SPARQL queries. B-specific representations and/or explanations for these
terms are obtained as a result of these queries and shown to B forming a resolved
issue XB.

(b) Decision support: User A uses the QuASE tool for decision support concerning
his/her future communication with the stakeholder B. He/she selects the subset
of B’s metrics and asks QuASE tool to look for all similar stakeholders (simi‐
larity search), for recommendations related to B, and for predicted values of the
selected metrics. The tool queries the QuASE KB using SPARQL and provides
the requested information to A based on the existing knowledge.

4 Defining QuASE Site Model and QuASE Site Ontology

In this section, we define the QuASE site DSL through its metamodel, and show how
QuASE site models are created by means of this DSL. We also describe an approach to
transforming these models into the instances of QuASE site ontology.

4.1 Metamodel for QuASE Site DSL

We define the metamodel for the QuASE site DSL on two levels: foundational level
shown in Fig. 6; and QuASE site level shown on Fig. 7.

On the foundational level (shown using an UML-like notation), we restricted
ourselves with a very lean set of concepts: Modeling Element consisting of Attributes
forms the top of the hierarchy; it specializes to Structural Modeling Element and
Descriptional Modeling Element; Entity and Relation are specializations of Structural
Modeling Element; Entities can again consist of entities. Relations consists of Perspec‐
tives connecting them to Entities; in turn, Entities are related through Relations. Attribute
and Perspective are Descriptional Modeling Elements.
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On the QuASE site level, we instantiate the foundational concepts as metaclasses.
In this level’s metamodel:

1. Separate entity metaclasses are defined to specify modeling constructs corre‐
sponding to context units (Context Unit), content units (Content Unit), and knowl‐
edge units (Knowledge Unit). The Knowledge Unit is composed of a triple of
Representation Unit, Ontological Foundation, and Resolution Unit metaclasses.

2. For every entity metaclass, the corresponding “relation to itself” metaclass is defined
which can be instantiated to connect modeling constructs belonging to this metaclass
(e.g. the instances of Content Unit Relation metaclass can connect model elements
which are the instances of Content Unit; a model level example of such relation could
define that Issue Versions are related to Issues).

3. Part-whole composition meta-relations are defined for entity metaclasses.
4. Two relation metaclasses are defined that can be instantiated to connect instances of

different entity metaclasses: the instances of Context-Content Relation connect
Context Units and Content Units (defining e.g. that the Persons are able to provide
their knowledge while forming Issues), whereas the instances of Capability connect
Context Units and Knowledge Units (defining e.g. that the Persons are able to under‐
stand Notions).

Fig. 6. Foundational concepts for the metamodel of the QuASE site DSL

Fig. 7. Metamodel for the QuASE site DSL (the notation uses notions from ER)
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5. Context Units can contain Representation Units (e.g. the Description of the particular
Issue can contain a set of Plain Text Fragments).

6. For every relation and entity metaclass, the type is defined as an additional meta-
attribute (not shown on a diagram); in particular, for capabilities the following
predefined relation types are available: “is able to understand”, “is able to understand
with explanation”, “is able to explain”, and “is able to perform”. Such types are not
defined as separate metaclasses to restrict the number of metamodel elements; it
allows keeping it stable while allowing defining additional types for the particular
instance of the QuASE site model.

4.2 Defining the QuASE Site Model by Means of the QuASE Site DSL

The QuASE site DSL editor tool is produced by implementing the QuASE site meta‐
model in the ADOxx meta-modeling framework (http://www.adoxx.org). Figure 8
shows a snapshot of its user interface displaying an instance of the QuASE site model.

Fig. 8. Fragment of a particular QuASE site model in ADOxx-based DSL editor

On the current stage of the project, we restricted ourselves with a limited set of
notational elements; the notation is going to evolve alongside the progress of the project.
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Entity-based and relation-based constructs are respectively denoted with colored boxes
and colored diamonds; relations have incoming and outgoing connectors with associated
cardinalities. Categories of constructs are distinguished by their background color; for
context-content relations and capabilities, two colors are used separated by the vertical
line. The names of categories are also shown in angle brackets similarly to the names
of stereotypes in UML class diagrams. In addition, the UML-inspired composition
connectors can be defined between elements if allowed by the metamodel.

Attributes are specified using a notation similar to the one used in UML class
diagrams. The attributes for relations can also be specified (not shown on the diagram).

In Fig. 8, the QuASE site model includes the following context units as elements of
the site-specific context configuration: Category, Organization, Project, and Person.
Individual context units are connected by the relation of type “propagate capabilities”
which denote that the capabilities belonging to the source unit are inherited by the target
unit unless it overrides them, e.g. the capabilities of the particular project are inherited
by the persons involved in the project.

The configuration of content units reflects the JIRA-like structure of the project
database; it includes Issue and Issue Version as higher-level content units; in a project
repository (e.g. a JIRA database), such units can correspond to interrelated tables.
Description, Solution, and Subject are lower-level units (representation holders); their
instances contain Plain Text Fragments (instances of representation units); in a project
repository, these units can correspond to the attributes able to hold communicated infor‐
mation. The container for these units is Issue Version.

The only knowledge unit shown in Fig. 8 is Notion; it contains Plain Text Fragment
as a representation unit, Concept as ontological foundation, and Plain Text Explanation
as a resolution unit. I.e., the site model defines that the notions are represented and
explained using plain text. Concepts can be connected to each other with “generalize”,
“is similar” and “is equivalent” relations; this fragment of the model is intended to define
the means of specifying QuOntology.

The instances of Plain Text Fragments can be also connected to the other instances
of this concept via “is equivalent” and “is similar” relations. This models the configu‐
ration where the means of representation can be compared and checked for similarity.

4.3 Generating QuASE Site Ontology

The QuASE site model defines a conceptual configuration of the communication envi‐
ronment as a set of interrelated entities. To incorporate this configuration into the
structure of the QuASE KB, it has to be transformed into computational ontology
representation; we propose to target OWL 2 representation in this transformation.

We have implemented Java-based a QuASE site generator tool aimed at this purpose.
It obtains the serialized QuASE site model from the QuASE site editor and applies a set
of rules to generate OWL 2 constructs corresponding to the QuASE site DSL constructs.
These rules are based on a set of rules published in [3] to control the conversion of the
generic conceptual modeling language OntoUML into OWL:
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1. The set of metamodel-based OWL classes is included in the resulting ontology prior
to processing the model elements; it is stable across conversions. Such classes repre‐
sent metaclasses defined on both, foundational and QuASE site levels: Context
Unit ⊑ Entity ⊑ ModelingElement, Capability ⊑ Relation ⊑ ModelingElement;

2. An entity model element is transformed into an OWL class as a subclass of the class
which represents the entity’s meta-class: e.g. the rule activated on arriving of a
Context Unit model element named Person forms the following OWL class hier‐
archy: Person ⊑ ContextUnit ⊑ Entity ⊑ ModelingElement.

3. A relation model element is transformed into
(a) an OWL class for the element (named based on the value of its type attribute

and the names of connected entities: e.g. Person_IsAbleToExplain_Notion);
this class becomes a subclass of a class that represents a particular value of its
type attribute which in turn becomes a subclass of the relation’s meta-class:
Person_IsAbleToExplain_Notion ⊑ IsAbleToExplain ⊑ Capability ⊑ Rela‐
tion ⊑ ModelingElement

(b) a set of object properties for perspectives and for the relation itself named by
prefixing the relation name with [SOURCE_FOR] or [TARGET_FOR] for
perspective-based properties or with [PROPERTY_FOR] for the relation-based
properties: [SOURCE_FOR] Person_IsAbleToExplain_Notion ⊑ [SOURCE_
FOR]Capability ⊑ [SOURCE_FOR] Relation ⊑ topObjectProperty; inverse
properties are additionally prefixed with [INV].

(c) a set of axioms connecting the resulting class and its target entity classes through
perspective properties; following [3], we made these axioms depend on the
cardinalities specified for the perspectives in the site model:
(i) for the cardinality of 0..* (optional perspective) no axiom is added, only

domain and range restrictions are specified for the particular property:

(ii) for the cardinality of 1..* (mandatory perspective) existence axioms are
added as equivalent classes to both the relation and the target classes:

(iii) for quantity-based cardinalities (0..n, n, n..m, and n..*) cardinality axioms
are added; e.g. if every issue must have at least 2 versions the axiom
defining the relation class will be as follows: IssueVersion_IsAVer‐
sionOf_Issue ≡ ⋝2 [SOURCE_FOR]IssueVersion_IsAVersionOf_Issue.
IssueVersion
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4. Attributes are transformed into data properties and the corresponding axioms
connecting these properties to the possessing classes.

On the technical level, as ADOxx-based modeling tools serialize models using XML-
based ADOXML format, these transformation rules are applied to the units of data
obtained from ADOXML stream. According to ADOXML specification, these units
uniformly represent instances of the modeling elements defined on diagrams. The
matching conditions are based on the values of attributes of these instance units.

The tool can be extended with plugins encapsulating new type-level rules (additional
types defined as new values for the type meta-attribute).

5 Related Work

In this section, we discuss several categories of the related work: (1) addressing the
complete set of goals for QuASE, (2) addressing particular goals of QuASE, (3)
addressing collecting knowledge about communication environment and communicated
information and obtaining the data from project repositories for analytical purposes.

The approaches addressing the complete set of QuASE goals belong to the category
of solutions that facilitate reusing, adapting, and analyzing the development knowledge.
In particular they apply the existing body of research on knowledge management to the
field of software engineering [2, 4]. A more specific category of solutions is related to
managing past software engineering experience; they are known as experience manage‐
ment solutions [21]. With respect to our aims, such solutions bear the following short‐
comings: (1) they do not specifically address quality-related issues, it is true especially
for those issues that are available from existing repositories; (2) they collect the expe‐
rience only as viewed from the developer side; the business stakeholder’s view is mostly
ignored, understandability management is not supported.

Current research addressing understandability of the information in the software
process mainly deals with this quality characteristic defined for the following software
process artifacts (we group these artifacts by the stage of the development process):
(1) requirement engineering-related artifacts: in particular, understandability of the
requirement specifications is addressed in [14], whereas [1] deals with understanda‐
bility of the use case models; (2) design-related artifacts: in particular, the set of
metrics for measuring understandability of the conceptual models is defined in [18],
understandability of entity-relationships diagrams is introduced in [6], and the set of
factors influencing understandability of the business process models is outlined in [20];
(3) implementation-related artifacts: in particular, the set of metrics for source code
understandability is defined in [10, 16];

The differences between our approach and the above techniques are as follows: (1)
most state-of-the-art techniques address understandability of the particular categories
of development-related artifacts (such as requirements, source code, or conceptual
models); our research, to the contrary, addresses understandability of the generic frag‐
ments of communicated information which could be contained in documents belonging
to different categories; in this paper, these documents are exemplified by issues; (2) these
techniques, as a rule, do not specifically address understandability of quality-related
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information; (3) they do not employ ontology-based approach for establishing common
understanding between parties in the software process.

The approaches to obtaining information from project repositories for analytical
purposes typically belong to the research area of mining software repositories [12].
Particular examples include automatic categorization of defects [30], building software
fault prediction models based on repository data [31], and using repositories to reveal
traceability links [13]. Other approaches use repository information to analyze the
applicability of specific development practices [5].

Repository mining solutions use software repositories as sources of quantitative
code- and coding process-related information (such as the frequency of bugs, the time
spent on various tasks, information about commits into repositories etc.). In contrast to
that, QuASE uses repositories as sources for communicated information by looking into
issue descriptions, negotiation opinions, wikis, and requirements documents. In addition
to the difference in the general goals, our approach differs from these solutions as it is
based on an established set of conceptual structures that represent communication envi‐
ronment and communicated knowledge.

6 Conclusions and Future Work

In this paper, we outlined a solution that is intended to support understandability and
reusability of quality-related information, and thus may help to improve the quality of
decisions in the software development process. The QuASE provides a knowledge-
oriented interface to information that is communicated and collected in the course of
software development projects. For this purpose, we introduced a set of knowledge
structures representing both communication environment and the communicated infor‐
mation and described how they are incorporated into QuASE site ontology and QuOn‐
tology to form QuASE KB. We also defined the architecture of the QuASE system and
introduced the techniques for creating QuASE site ontology by the knowledge suppliers.

Ongoing research within the framework of the QuASE project in the short term aims
at implementing understandability and analysis scenarios in a QuASE tool based on the
defined conceptual structures. It has to be achieved through implementing and testing
the QuASE solution on top of establishing site models for all partner companies, gener‐
ating QuASE site ontology instances based on these models, and collecting project data
corresponding to the established site models.
We also aim at the following long-term research goals:

1. Establishing QuASE process support by elaborating the means of integration of the
QuASE-specific activities into different software development process models (by
implementing the scenarios implementing “QuASE for agile” etc.)

2. Generalizing QuASE as a means of implementing generic understandability
management and issue-based analysis support:
(a) through handling different representation formats (not only plain text): in partic‐

ular to manage understandability of conceptual schemas or other artifacts;
(b) by establishing generic process support to be specialized for different processes

not limited to software development; the case study for this generalization can
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be integrating QuASE capabilities into the HBMS framework [17, 19] for
managing understandability in the Ambient Assisted Living domain.
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