
QuASE: A Tool Supported Approach to Facilitating Quality-Related 
Communication in Software Development 

Vladimir A. Shekhovtsov, Heinrich C. Mayr, Vladyslav Lubenskyi 
Application Engineering Group, Institute of Applied Informatics, 

Alpen-Adria-Universität Klagenfurt, Klagenfurt, Austria 
{volodymyr.shekhovtsov,heinrich.mayr,vladyslav.lubenskyi}@aau.at  

 
 

Abstract— The paper describes the current state of the 
ongoing project QuASE. This project aims at facilitating 
quality-related communication in software development by the 
following means: a communication platform providing view 
harmonizing mechanisms for the different parties involved in a 
software process; decision making support related to quality 
issues; reuse of experience from former communication; 
prediction of quality-related experience. We describe usage 
scenarios for this approach, and outline its core concepts as 
well as the current progress of its implementation. 

 Keywords- quality, understandability, decision support, 
software development  

I.  INTRODUCTION 
To succeed, software development processes require a 

smooth communication between the different parties 
involved, especially developers and business stakeholders. In 
particular, they need to have a common understanding of the 
quality (and its dimensions) the software under development 
should have; without this, quality-related problems are often 
detected only on later stages of the development lifecycle. 
Obviously, besides of enabling such communication, the 
communicated quality-related information has to be 
managed properly and made available during the software 
process; moreover, as past-experience may help to take the 
right decisions, such information should be provided in a 
way that allows for easy access and analysis. 

To explore ways to a comprehensive solution for these 
issues, the QuASE project1 has been established in 
cooperation with four small or medium sized software 
companies [9-12]. QuASE has two main goals: 

(goal G-1) to establish means for enhancing the quality-
related communication between the different parties 
involved in a software process, especially for developers and 
business stakeholders; these means are based on acquired 
and formalized domain knowledge about quality issues in 
software processes.  

(goal G-2) to support decision making in the software 
process, reuse of quality-related experience, and the 
prediction of the future quality-related behavior of the 
involved parties – based on the collected knowledge. 

This paper describes the current state of the QuASE 
project: In section 2 we define usage scenarios derived from 
the goals G-1 and G-2. Section 3 describes the current 
implementation status of the QuASE tool. Section 4 

                                                           
1  The QuASE Project is sponsored by the Austrian Research 

Promotion Agency (FFG) in the framework of the Bridge 1 program 
(http://www.ffg.at/bridge1); Project ID: 3215531 

addresses related work, and is followed by conclusions and 
hints on future work directions. 

II. QUASE USAGE SCENARIOS 
In the initial project stage, usage scenarios for the 

prospective tool have been elaborated in cooperation with the 
partner companies. These scenarios are presented 
subsequently broken down by four categories: 
understandability management (addressing G-1), reuse and 
analysis (both addressing G-2), and preparation. A more 
detailed treatment of understandability management may be 
found in [11]. 

A. Preparation 
Prior to use the tool for a software development 

endeavor, the user has to specify the working environment in 
terms of context and document elements.  

Following [10], we define QuASE context elements as 
units having particular views on communicated information, 
e.g. projects, organizations and their departments, involved 
stakeholders etc.. QuASE documents are defined as units 
shaping communicated information, e.g. JIRA [1] issues, 
requirement specifications etc..  

For context selection the user chooses from the available 
set of context elements those which are relevant for the given 
project - thus forming a context selector (e.g. the particular 
stakeholders).  

Document selection consists in picking the target 
document(s) out of the available set (e.g. a particular issue or 
a set of issues).  

B. Understandability management  
We distinguish understandability assessment and 

improvement scenarios. 
1) Understandability assessment 

Understandability assessment aims at identifying and 
assessing understandability problems: it involves calculating 
understandability metrics for the source document(s) 
according to the given context, and identifying potential 
understandability problems these document(s) might cause; 
also, recommendations for dealing with these problems are 
within that scenario. 

For calculating the understandability metrics the user (1) 
selects the source context (the original context of the 
document; e.g., the originating company) and the target 
context (i.e., the context to check the document against; e.g., 
the customer representative), (2) selects the document or a 
set of documents, and (3) obtains the values characterizing 

2014 9th International Conference on the Quality of Information and Communications Technology

978-1-4799-6133-7/14 $31.00 © 2014 IEEE

DOI 10.1109/QUATIC.2014.28

161

2014 9th International Conference on the Quality of Information and Communications Technology

978-1-4799-6133-7/14 $31.00 © 2014 IEEE

DOI 10.1109/QUATIC.2014.28

162



the effort necessary to understand the document in the target 
context. 

2) Understandability improvement 
Understandability improvement is to minimize the 

(conceptual) distance between a given piece of 
communicated information and the perspective of the target 
party. QuASE aims at supporting translation-based and 
explanation-based improvement: the former focuses on 
purely terminological conflicts where simple substitution of 
terms is sufficient; the latter addresses problems resulting 
from one side’s ignorance of the concepts behind the 
communicated terms. 

For translation (see Fig.1) the user (1) selects the 
document or supplies the arbitrary text, (2) specifies the 
source and target contexts, and (3) obtains a version of the 
specified text with translated (quality or domain) terms. 

 

 
Figure 1.  Prototype UI for translation-based scenario 

For explanation steps (1) and (2) are performed as above; 
in step (3) the user highlights the problematic terms in the 
document and obtains plain text or structured explanations of 
these terms. 

C. Reuse 
Reuse of information from past communication activities 

is based in our approach on applying similarity search 
techniques.  

For document-based similarity search the user selects 
some attributes of a given document (e.g. a specific issue). 
The values of these attributes then are used for the search of 
documents in the systems’ repository, the similarity distance 
of which is below a predefined threshold. Example: (1) the 
user selects the issue I and a subset of its attributes aI 
including ‘emotional tone’ and ‘expressed attitude to the 
project’ and (2) gets the issues with similar values for these 
attributes.  

For context-based similarity search the user selects a 
context element (e.g. stakeholder) with the goal of finding 
similar ones; the similarity distance is calculated based on a 
subset of attributes of the selected context element. In 
addition the system will return the documents that are related 
to the resulting elements. 

Fig.2 shows an example of such scenario: the user (1) 
selects the stakeholder S and a subset of its attributes aS 
including ‘ability to explain’ and ‘attitude to detail’; (2) 
obtains the stakeholders with similar values for these 
attributes and the issues related to these stakeholders.  

Similarity search techniques could also be used as 
building blocks for handling analysis scenarios. 

D. Analysis  
1) Recommendation 

The user goal in such scenarios is to obtain 
recommendations, e.g. a document defining the way of 
working with a given issue, or for communicating with a 
particular stakeholder. We distinguish document-related and 
context-related recommendations, and classify these 
according to their scope: behavior-related recommendations 
describe the appropriate communication behavior; 
capability-related recommendations address user capabilities 
required to deal with the recommendation target (RT), i.e., 
an issue, how to deal with recommendations are desired. 

As an example, a user might select an issue I as RT, and 
obtains in reply the recommendation that ‘a high level of IT 
knowledge’ is required for dealing with I. In such cases, 
attribute values of the given document or context elements 
are used for an automatic recommendation extraction.  

 
 

 
Figure 2.  Prototype UI for context-based similarity search 

In neither scenario the user selects a specific RT attribute 
and obtains in reply a set of recommendations related its 
value ranges. Example: the user selects an issue I and the 
attribute “Attitude to detail of the stakeholder”; this will 
result in recommendations for different value ranges of that 
attribute.  

Fig.3 shows the prototype UI supporting both scenarios. 
 

 
Figure 3.  Prototype UI implementing recommendation scenarios 

2) Prediction  
Predictions are based on historical data from previous 

development projects available in the QuASE knowledge 
base. They support decision making, e.g. concerning 
communication strategies, or issue handling schedules (based 
on estimated processing times). 

Computing predictions starts from attribute values of the 
given prediction target (PT), i.e., again documents or context 
elements.  

162163



In a value prediction scenario the user selects an attribute 
ap of the PT p and obtains the predicted (computed) value of 
ap. The computation is based on the value distribution for that 
attribute within the QuASE knowledge base restricted to 
elements similar to p. A more sophisticated prediction yields, 
instead of a single value, an ordered set of values (or value 
intervals), each ranked with a derived probability. Fig.4 shows 
the prototype UI for such scenario (with confidence degrees 
based on value range probabilities). 

In a value-based what-if analysis scenario the user 
investigates the impact of changing metric values: in 
particular, the user can change the values for one (source) PT 
attribute (or a subset of attributes) and observe the changes 
of predicted values of another (target) attribute. 

 

 
Figure 4.  Prototype UI implementing value prediction scenarios 

3) Decision support  
The goal of decision recommendation is to obtain, for a 

given decision case, recommendations based on prior 
decision data: either as assessments of the current decision 
alternatives or by ranking alternatives according to particular 
criteria. Example: the user selects an issue I and, as decision 
type “selecting contact point for communication”; as a result, 
he obtains a ranked set of alternatives for this decision 
extracted from prior decisions made for similar issues. Fig.5 
shows the prototype UI supporting such scenario. 

 
 

 
Figure 5.  Prototype UI for decision recommendation scenarios 

The decision-based what-if analysis scenario describes 
situations, in which the user investigates the impact of 
making a particular decision: in detail, he selects alternatives 
and observes their effect on the value of relevant target 
attributes. E.g., the user might study, how selecting different 
contact points for dealing with issue I influences I’s time to 
handle. 

III. IMPLEMENTATION ISSUES 

A. Core Implementation Concepts 
In this section, following [10], we present the set of core 

implementation concepts that form the foundations of the 
QuASE knowledge base (QuIRepository); the structure of 
this knowledge is depicted in Fig.6.   

 

 
Figure 6.  Generic structure of QuIRepository 

1. QuASE site: owner of the given QuASE installation, e.g. 
a particular software provider; it defines the structure for 
context elements and documents.  

2. QuASE context and QuASE documents: correspond to 
the definitions provided in Section 3: document units 
can be related to particular context elements.   

3. QuASE knowledge: quality and domain knowledge that 
is subject of communication and harmonization. We 
organize it into knowledge modules representing 
particular views belonging to context elements; 

4. QuASE content: the information that has to be 
communicated. It is shaped by document units and 
interpreted according to the respective knowledge. 
Dealing with the content is decoupled from dealing with 
their holder documents; i.e., we can think of this content 
as of a uniform stream of data.  

To support understandability management, the QuASE 
knowledge modules are organized into a modular ontology 
(QuOntology). We thus provide a framework for translating 
between world views [9, 10, 13] by switching  between 
configurations of context-specific modules that are used for the 
content stream interpretation [11]. In reuse and analysis 
scenarios, the routines for similarity search, decision support, 
and classification operate with the above structures through the 
QuIRepository interface. 

B. Knowledge and Data Acquisition 
The current context and document configuration depends 

on the specific QuASE site configuration. In addition to using 
a modular ontology at runtime to support understandability 
management as outlined in [11], we propose a static 
ontology-based approach to define the QuIRepository 
structure at deployment time. We concentrate here on context 
and document configuration; a similar approach is defined to 
specify the configuration of available QuOntology modules. 

In this approach, we start with a context/document domain 
ontology, that is customized by specializations to site-specific 
ontology for a given application environment. At deployment 
time, this ontology is used to generate the site-specific 
database structure. To acquire the ontological knowledge, a 
notation for specifying context and document configurations is 
used, which will be supported by the metamodeling tool 
ADOxx (http://www.adoxx.org) to allow the responsible IT 
people to easily create and modify the desired configuration. 
The obtained ontological knowledge is then converted into 
OWL and used for database schema generation.  

163164



After acquiring the knowledge and generating the site-
specific QuASE data store, it is necessary to transfer the data 
from the existing repositories (JIRA databases, file-based 
repositories etc.) into this store. The process is described in 
[10]; it involves applying the mapping specifications 
generated from the above ontological structures; these 
specifications take into account the current site-specific 
database structure and the specifics of the source repository. 

C. Current State of Tool Support Implementation 
The overall architecture of the QuASE tool consists of 

three layers: On the back-end there is a Java application 
(QuASE core) responsible for the logic and data/knowledge 
access.  The client's web application is implemented as 
single page JavaScript application, hosted on the Django 
Framework (Python). Back-end parts of the solution 
communicate with each other by RabbitMQ. 

Currently, a team of four software developers together 
with a team leader work at different components of the 
system. As an example, we outline here the implementation 
of the context selector functionality. Its goal is to support the 
selection scenario depicted in Section 3. 

On the current stage of implementation, the context selector 
consists of two parts: the organizational unit as a component of 
the company’s structure, and a specific user or a group of users. 
The corresponding implemented scenario consists of the 
following steps: (1) selecting the organizational unit; (2) 
selecting the user or user group; (3) obtaining the list of 
documents from this context. Following the static ontology-
based approach, the QuASE data schema is defined at 
deployment time based, in part, on the context/document 
ontology expressed in OWL2. To support this, the physical 
data model for the QuASE storage contains the tables 
corresponding to meta-classes, specific instances of these meta-
classes and instance attributes (holding scalar values or the 
links to other instances).  

 

IV. RELATED WORK 
The approach discussed here belongs to the category of 

solutions that facilitate storing, reusing, adapting, and 
analyzing the development knowledge (experience 
management solutions [7, 8]) based on applying knowledge 
management techniques to software engineering [2, 3].  

Among these, from the point of view of addressed 
software process qualities, we can distinguish solutions 
separately addressing decision support quality [4] and 
understandability of the particular categories of 
development-related artifacts [5, 6, 14]; the problems of 
reusability of communicated information are not addressed 
broadly. An additional common problem is that, as a rule, 
such solutions only consider the view of IT people.  

The advantage of the QuASE approach is that it aims at an 
integrated solution that 
(1) targets understandability and reusability of 

communicated information, as well as decision quality,  
(2) handles understandability of generic fragments of 

communicated information (with emphasize on software 
quality) which are contained in documents,  

(3) takes into account the views of all involved parties.  

V. CONCLUSIONS AND FUTURE WORK 
In this paper, we outlined the main goals of the QuASE 

project and described its usage scenarios. The proposed 
approach facilitates effective communication in the software 
process by reducing the effort required from the parties to 
understand each other, especially while dealing with 
software quality, and making possible learning from past 
communication experience.  

Next we will complete the QuASE tool by implementing 
all usage scenarios; this also involves acquiring real-world 
knowledge and data into QuOntology modules and 
QuIRepository structures. The �-Version of the tool will then 
be rolled out to the partner companies for a first proof of 
concept in practice. 

REFERENCES 
[1] (08.05.2014). JIRA Issue Tracking System. Available: 

http://www.atlassian.com/software/jira 
[2] A. Aurum, R. Jeffery, C. Wohlin, and M. Handzic, Eds., Managing 

Software Engineering Knowledge. Berlin-Heidelberg: Springer, 2003. 
[3] F. O. Bjørnson and T. Dingsøyr, "Knowledge management in 

software engineering: A systematic review of studied concepts, 
findings and research methods used," Information and Software 
Technology, vol. 50, pp. 1055-1068, 2008. 

[4] E. Damiani, F. Fulvio, S. Oltolina, and G. Ruffatti, "Improving 
software process accountability with Spago4Q," in 2nd Workshop 
ATGSE, Beijing-Dicembre, 2008. 

[5] E. Kamsties, A. von Knethen, and R. Reussner, "A controlled 
experiment to evaluate how styles affect the understandability of 
requirements specifications," Information and Software Technology, 
vol. 45, pp. 955-965, 2003. 

[6] H. A. Reijers and J. Mendling, "A study into the factors that influence 
the understandability of business process models," IEEE Transactions 
on Systems, Man and Cybernetics, Part A: Systems and Humans, vol. 
41, pp. 449-462, 2011. 

[7] K. Schneider, Experience and Knowledge Management in Software 
Engineering. Berlin-Heidelberg: Springer, 2009. 

[8] N. Sharma, K. Singh, and D. Goyal, "Can Managing Knowledge and 
Experience Improve Software Process?-Insights from the literature," 
Research Cell: An International Journal of Engineering Sciences, vol. 
4, pp. 324-333, 2011. 

[9] V. Shekhovtsov, H. C. Mayr, and C. Kop, "Harmonizing the Quality 
View of Stakeholders," in Relating System Quality And Software 
Architecture, I. Mistrik, R. Bahsoon, et al., Eds.: Elsevier, 2014, in print. 

[10] V. A. Shekhovtsov and H. C. Mayr, "Managing Quality Related 
Information in Software Development Processes," in CAiSE-Forum-
DC 2014, CEUR Workshop Proceedings, vol. 1164: CEUR-WS.org, 
2014, pp. 73-80. 

[11] V. A. Shekhovtsov and H. C. Mayr, "Towards Managing 
Understandability of Quality-Related Information in Software 
Development Processes," in ICCSA 2014, Part V., LNCS, vol. 8583, 
B. Murgante, S. Misra, et al., Eds.: Springer, 2014, pp. 572-585. 

[12] V. A. Shekhovtsov, H. C. Mayr, and C. Kop, "Acquiring Empirical 
Knowledge to Support Intelligent Analysis of Quality-Related Issues 
in Software Development," in QUATIC 2012, J. P. Faria, A. Silva, 
and R. J. Machado, Eds. New York: IEEE, 2012, pp. 153-156. 

[13] V. A. Shekhovtsov, H. C. Mayr, and C. Kop, "Towards 
Conceptualizing Quality-Related Stakeholder Interactions in Software 
Development," in UNISCON 2012, LNBIP, vol. 137, H. C. Mayr, C. 
Kop, et al., Eds. Berlin-Heidelberg: Springer, 2013, pp. 73-86. 

[14] M. Svahnberg, T. Gorschek, M. Eriksson, A. Borg, K. Sandahl, J. 
Borster, and A. Loconsole, "Perspectives on Requirements 
Understandability -- For Whom Does the Teacher's Bell Toll?," in 
Proc. REET '08, 2008, pp. 22-29. 

164165


