
Let Stakeholders Define Quality:
A Model-Based Approach

Vladimir A. Shekhovtsov, Heinrich C. Mayr

Application Engineering Group, Institute of Applied Informatics,

Alpen-Adria-Universität Klagenfurt

Universitätstrasse 65-67, 9020 Klagenfurt, Austria

shekvl@yahoo.com, heinrich@ifit.uni-klu.ac.at

Summary. The paper describes the means of flexible model-based

process support for continuous quality-related interaction between

business stakeholders and software developers. The support is based

on model-driven and situational method engineering paradigms. The

support processes are defined as the results of enactment of the corre-

sponding process models; before the enactment, these models are tai-

lored to the task at hand by the specific adaptation process. The ob-

tained solution allows the developers to be continuously aware of the

stakeholders’ opinions on quality of the prospective system.

1. Introduction

Our research is motivated by the problems of defining the software process activities

of collecting the opinions of business stakeholders, in particular, their opinions on the

quality of the prospective system (for our research, we selected performance and reli-

ability as the relevant quality characteristics). The need to perform these activities

continuously is supported by both theoretical work (the concept of reaching out of

bunkering in [1] i.e. the need in breaking potentially damaging “submerging” into the

development activities by obtaining the opinions of stakeholders on the work done so

far) and the development practice (e.g. the regular check-ins in Scrum [20]).

There are problems with these activities that make their organization difficult:

1. It is difficult for stakeholders to express the opinions on the quality of the prospec-

tive system if they cannot experience it in the appropriate context. Without this,

they can only formulate the imprecise opinions e.g. “the system must be reliable”.

2. The process of assessing the quality of the prospective system depends on the an-

ticipated or implemented interaction of this system with its environment; this as-

sessment is a complex task.

To address these problems, the QuASE project (Quality-Aware Software Engineer-

ing) was established in cooperation with two local IT companies. It aims at process

and tool support for quality-related stakeholder interactions in a software process

with an ultimate goal of facilitating intelligent analysis of quality-related issues in

software development [24-26].

This paper describes the means of flexible process support for the activities estab-

lished as a part of the project. We define the model-driven approach to the proposed

process solution, where every process is implemented as an enactment of the particu-

lar process model; and describe special process tailoring these process models to the

problem at hand following situational method engineering paradigm.

The paper is structured as follows. Section 2 describes the necessary background in-

formation. Section 3 describes the proposed solution structure, followed by the de-

scription of the related work and the conclusions.

2. Related work

Several approaches exist aiming at using quality to drive particular software engi-

neering tasks or on the different development stages. Among these approaches are

Quality-Driven Re-Engineering [27], QuadREAD project [18] targeting transitions

between requirements engineering and architectural design, approaches targeting quali-

ty-driven development restricted to architectural design phase [12].

Closer to the goal of our approach are approaches aimed at making the entire soft-

ware process driven by quality. Examples are [6, 9], model-driven techniques such as

Quality-Driven Model Transformation [15], more recent model-driven techniques

[4]. These approaches, however, do not envision organizing direct interaction with

stakeholders.

3. Background information

3.1. Conceptualization of quality-related knowledge

Prior to defining the process support for quality-related stakeholder interaction activities,

the knowledge of these activities needs to be acquired and conceptualized. We intro-

duced the original approach for conceptualizing the software quality in [21] and ex-

tended it in [25]. This work expressed the notions of software quality and its usage in

the terms of the formal ontology [14]. Another body of preliminary research was re-

lated to conceptualizing the knowledge about quality attributes and quality require-

ments. To solve this problem, we introduced Quality-Aware Predesign Model for

Services [22, 23], for our purposes, we generalize it to cover activities not specific to

software services.

Based on these conceptualizations, we are currently working at establishing a com-

mon StakeQPA ontology (the ontology of Stakeholder Quality Perception and As-

sessment). Describing this ontology in detail is out of scope of this paper (the catego-

ries of knowledge to be incorporated are enumerated in [26]); here we only state that

it extends the conceptual notion of quality by defining, among others, the concepts of

Expected and Proposed quality (the complete list of concepts is introduced in [25]).

The Expected quality is defined as an image of a quality of the system under devel-

opment conceived of by the individual stakeholder as a quality he/she wants the final

system’s version to provide. This kind of quality needs to be taken into account when

the software process deals with stakeholder’s opinions, but it exists only in a stake-

holder’s mind. The Expected quality is an individual quality as opposed to the collec-

tive quality reflected in quality requirements.

The Proposed quality denotes a set of values for quantified quality attributes of the

system under development reflecting the current state of its development and repre-

sented in a form suitable for the perception by stakeholders. It can be obtained from

e.g. a simulation model of the qualities of the system under development reflecting its

current state of development or the system prototype.

3.2. Continuous quality awareness

We focus on formalizing the process of interaction between business stakeholders

and developers utilizing the obtained ontological knowledge. We plan to base this

process on the idea of achieving Continuous quality awareness [24]. It means that the

developers should be able to check both the desired quality of the software under de-

velopment (SUD) from the point of view of its stakeholders and the current position

of the SUD with respect to that quality throughout the software process. Achieving

such awareness correspond to the notion of reaching out from [1], when the members

of the development team are supposed to continuously break the “bunkering” barrier

to make themselves aware on the stakeholders’ opinion on the work done so far.

We need to formalize the set of awareness support processes to be performed contin-

uously on different software process stages. They should provide the means of getting

the correct stakeholder opinions on quality. For elaborating such processes, we use in-

teractive simulation of software performance and reliability defined as follows:

• Quality simulations are parameterized by the factors that influence qualities; they

are executed interactively in the context of the system usage;

• Business stakeholders experience simulated qualities in simulated usage contexts

corresponding to their roles, and assess this experience;

• The obtained assessments are used as a basis for software engineering activities to

achieve the desired level of quality awareness.

4. Proposed solution structure

4.1. Model-based process engineering activities

We propose to define the set of processes directing awareness support activities to be

integrated into the common Awareness Support Process. For this task, we rely on

model-driven and ontology-based software engineering paradigms by composing

process models for the necessary activities based on StakeQPA knowledge; they, in

turn, are to be integrated into the common process model: Awareness Support Model.

Launching Awareness Support Process is the result of the enactment of this model.

Establishing the process support entails the following activities (Fig.1):

1. Engineering core models. To establish process models, we make use of the Situation-

al Method Engineering paradigm [8] aimed at allowing for engineering such mod-

els [2, 28] tailored to the problem at hand out of the reusable process fragments

[19]. We plan to formalize the set of models to serve as such fragments (Core Mod-

els) based on the StakeQPA knowledge.

Fig.1. Model-based process engineering activities

2. Establishing and formalizing adaptation process. We formalize the Adaptation

Process adapting the Awareness Support Process to the problem at hand. It con-

tains the activities for (1) assembling the problem-specific set of process models

to be incorporated into the Awareness Support Model while making use of the

Core Models; (2) tailoring these models to the specific problem.

3. Establishing and formalizing Awareness Support Process. Based on StakeQPA

and Core Models, we formalize the process models comprising the Awareness

Support Model. The corresponding processes aim at addressing the goals of the

project; both stakeholders and developers are supposed to interact with them.

In this paper, we concentrate on the activities of the adaptation process. More detailed

treatment of the core models and the Awareness Support Process is presented in [24];

here we provide only necessary background information.

4.2. Engineering core models

To achieve the goals of QuASE adaptation to the problem at hand, we formalize the

set of Core Models to be later combined by the Adaptation Process using the

knowledge about the problem to form the custom Awareness Support Model. In this

section, we describe two categories of such models aimed at organizing forming the

Proposed Quality and revealing the Excepted Quality for particular qualities. Such

models are used in adaptation mode to form the process models related to revealing

all the qualities for the particular functional units of the system under development.

Quality Revealing Models formalize processes of organizing interactions with stake-

holders to reveal the particular Expected Quality characteristics making use of

StakeQPA ontological knowledge. The input for such process is the value of the Pro-

posed Quality; its output is a revealed Expected Quality value obtained from a busi-

ness stakeholder.

The implementation of the modeled process depends on the quality characteristic,

stakeholder type, and project type. The interaction process can take a form of: (1)

human-computer interaction; (2) human-to-human interaction (e.g. analyst delivers

Adaptation

process

Custom Awareness

Support Model

Awareness

Support Process

StakeQPA

Core

models

the Proposed Quality value to stakeholder and asks for assessment); (3) empirical

method-based interaction (using questionnaires etc.).

Enacting Quality Revealing Model creates the instance of the interaction process

which (1) receives the numerical quality value as an input (not depending on its

source), (2) makes the stakeholder experience this quality according to this value, (3)

involves the stakeholder in an interaction related to an assessment of his/her experi-

ence and (4) returns the assessment value obtained from the stakeholder.

Quality Forming Models formalize processes of forming the Proposed Quality val-

ues. The particular implementation of such process depends on the particular quality

characteristic and project type. Its goal is to present the Proposed Quality to the

Quality Revealing Process (created as a result of the enactment of Quality Revealing

Model). Its input is a set of values for factors influencing Proposed Quality. We plan

to establish two categories of Quality Forming Models:

• Backed by real software solutions; for such implementation, we plan to formalize

the adapter models defining processes of connecting to the running code with a

goal of obtaining the Proposed Quality values;

• Based on simulation models; such implementations describe the processes for pa-

rameterized simulation of Proposed Quality values. These processes are responsi-

ble for composition and execution of simulation models.

4.3. Model-based adaptation process

We start from describing Adaptation Process (Fig.2) input and output artifacts.

Among its necessary inputs are: the StakeQPA ontology, the set of core models, and

the knowledge possessed by the software engineers involved into the adaptation. The

output from this process will be Awareness Support Model representing Awareness

Support Process tailored for the problem at hand. Below we enumerate its activities.

Fig.2. Adaptation Process

Define project environment tailors the Awareness Support Process to the task at

hand by performing the following lower-level activities (1) forming the set of availa-

ble categories of stakeholders, (2) categorizing and defining the properties of the or-

ganization under scrutiny, (3) defining the properties of interest for the project at

hand. The Project Environment Model is an output of this activity.

Define scope sets the Scope of the SUD considered as the set of Quality-Bearing

Units of interest defined for this system and the set of qualities of interest connected

Enable qua-

lity revealing

for unit

Define

state

dependency

Define

resource

dependency

Enable

quality

revealing

in context

Enable

quality

collection

Enable

state

evaluation

Define

scope

Define

project

environment

Enable

RE

support

Enable

lifecycle

integration

for every unit of
interest

for every
usage context

StakeQPA,

core models,

project/

software

knowledge

Custom

Awareness

Support

Model

Adapt QuASE to the
problem at hand

to these units. The type of such units (e.g. services or service operations for the ser-

vice-oriented system) and, therefore, the approach to decomposing the system into

such units, depends on the system’s type defined in Project Environment Model so

this activity directly depends on the results of the environment definition activity. As

a result, the Scope Model has to be produced.

Define state dependency models the set of dependencies between the description of

the state of the system (e.g. software architecture or the particular architectural deci-

sion) and the factors influencing Proposed Quality (examples are e.g. [3, 7, 13]) for

the problem at hand; producing the State Dependency Model.

Define resource dependency models the set of dependencies between the develop-

ment resources and the factors influencing Proposed Quality for the problem at hand

(an example of cost-involving dependency can be [16]) producing the Resource De-

pendency Model.

Enable quality revealing for a SUD unit aims at the composition of Quality Reveal-

ing Model and Quality Forming Model grouped by the Quality-Bearing Unit of inter-

est included into the Scope. For example, for the service-oriented system we can

group qualities by service or separate service operation. The result of this activity is a

Unit-Level Model for a particular unit (e.g. service operation). Its enactment should

be able to make the business stakeholder experience the Proposed Quality and reveal

the Expected Quality for the particular quality-bearing unit. Adaptation Process per-

forms this activity for all units of interest defined by Scope Model to obtain the set of

Unit-Level Models corresponding to the Scope.

Enable quality revealing in context provides particular system under development’s

usage context [10] to ensure realistic stakeholder experience. We define such context

as the way of organizing a meaningful interactive session between the stakeholder

and the enactments of the Unit-Level Models for the Scope. In [11] we proposed to

represent such context by a Context-Level Model defining an interactive process al-

lowing stakeholders to participate by describing the sequence of actions for the par-

ticular stakeholder interaction session. It embeds Unit-Level Models corresponding to

unit-level interactions composed for every Quality-Bearing-Unit of interest. Adapta-

tion Process performs this activity for all the usage contexts to obtain the set of nec-

essary Context-Level Models.

Enable quality collection models a process of controlling different Expected Quality-

revealing sessions in different contexts and the integration of the results of these ses-

sions obtaining the Quality Collection Model. With its enactment, it should be possi-

ble to execute such sessions for the selected contexts in the selected order, collecting

both formed Proposed Quality and revealed Expected Quality from these sessions.

Enable requirements engineering support establishes the Requirement Engineering

Support Model aimed at using the obtained Expected Quality to get quality awareness

at the requirement engineering stage. Its enactment should allow:

• Eliciting new quality requirements (defined as e.g. “the quality value for the Qual-

ity-Bearing Unit q must exceed the threshold”) by defining the corresponding

threshold values e.g. by aggregating them out of the captured output of the Ex-

pected Quality collecting activity comprising both Expected Quality and Proposed

Quality values. For this aggregation, it should take into account such information

as the relative importance of stakeholders or contexts etc.

• Validating already-existing quality requirements by comparing them to the re-

vealed Expected Quality values.

Enable state evaluation defines the State Evaluation Model to be enacted to evaluate

the particular state of the system under development (snapshot evaluation mode) or

the assessments of the influence of the particular state-modifying decisions (incre-

mental evaluation mode) by forming Proposed Quality values corresponding to the

particular state of the system (or the change in this state) and collecting Expected

Quality values representing the stakeholders’ opinions on the state in question.

Enable lifecycle integration aims at establishing the Lifecycle Integration Model

aimed at integrating obtained awareness support data into the software lifecycle to

achieve continuous quality awareness. The integration itself can be implemented e.g.

by defining the notion of Quality-Related Issue (in the same sense as used in the is-

sue-tracking systems such as JIRA or Mantis) raised on different software process

stages. Handling such issue could utilizes the information from the Lifecycle Integra-

tion Model enactment process and compares this information with e.g. the Proposed

Quality values obtained from the Resource Dependency Model enactment process.

The information about past Quality-Related Issues (supplemented by rich semantics

obtained from StakeQPA) need to be stored into the Semantic Issues Repository. This

repository is planned to support intelligent analysis of such issues such as predicting

the behavior of the stakeholders based on the issues encountered in the past [26].

4.3.1. Implementation support

To facilitate integration of the proposed adaptation solutions into the software pro-

cess, we plan to make use of the capabilities of the Eclipse Process Framework

(EPF): we plan to describe the set of activities according to the SPEM metamodel

[29] and establish this representation in EPF. In addition, following [17], we aim at

elaborating a Computer-Aided Method Engineering (CAME) solution aimed at de-

signing custom interaction-supporting process models out of abstract method compo-

nents, configuring these models with concrete technological assets (such as Eclipse-

based model editors) and generating custom interaction-supporting CASE tools.

4.4. Awareness support process

Detailed description of the Awareness Support Process can be found in [24], here we

emphasize its main features (Fig.3). Its inputs are the Adaptation Process-customized

Awareness Support Model and the knowledge about the quality-aware decision to

make. Its output is the information necessary for making a quality-aware decision.

The Awareness Support Process is started as a result of encountering the Lifecycle

Integration Model-defined point of interest in a software process (launching a Quali-

ty-Related Issue). Then, the system performs the necessary actions to start the specif-

ic awareness support activity for this issue. In parallel, software engineer is asked to

specify the information specific for the context of the solution at hand (such as the

values of quality-influencing factors), this activity is called QuASE parameterization.

Fig.3. Awareness Support Process (from [24], with modifications)

To reveal Expected Quality in contexts, Quality Collecting Model enactment process

iteratively enacts the set of Context-Level Models for all the selected contexts launch-

ing the interactive Quality Revealing Processes ready for stakeholders to participate.

Every such process is presented to the stakeholder belonging to the particular role.

During the run, when the logic of the usage process workflow requires invoking an

activity representing the Quality-Bearing Unit of interest, the forming of Proposed

Quality (e.g. by simulation) and the revealing of Expected Quality are handled by the

corresponding Unit-Level Model enactment process. The outputs for the run include

the set of revealed Expected Quality values (e.g. the assessment results).

After some of all revealing interactions are completed, the system collects the values

for both Proposed Quality and Expected Quality from the results of these interac-

tions. Then, the enactment process for Requirements Engineering Support Model or

State Evaluation Model forms the necessary awareness data out of these collected

values. This data can be then directly or indirectly used by the software engineers in

the process of making the quality-aware decisions.

5. Conclusions

The proposed flexibility-enabled solution is justified by the fact that both application

developers and business stakeholders are expected to get benefits from it.

Application developers will benefit from (1) a possibility for getting access to the

core models as reusable method components making possible building customized

quality-aware software processes tailored to the problem at hand; (2) a support for

continuously taking into account the opinions on quality expressed by stakeholders.

These benefits can serve as foundations for a competitive advantage of consistently

delivering the software with stakeholder-expected quality.

Business stakeholders will benefit from a solution aimed at making them immune to

their real preferences related to the quality of the prospective system getting mishan-

S
ta

k
e

h
o

ld
e

r
Q

u
A

S
E

 s
y
s
te

m
S

o
ft
w

a
re

 e
n

g
in

e
e

r

Wait for

a need for

a decision

Prepare

awareness

support

Prepare

quality

collection

Prepare

quality

revealing

in context

Form

proposed

quality

values

Experience

proposed

quality

values

Reveal

 expected

quality

values

Capture

expected

quality

values

for every software
unit of interest

for every
usage context

Specify

parameter

values

Invite

stake-

holders

Collect

quality

data

Analyze
quality data

Form

awareness

data

Analyze
awareness

data Prepare a
quality-aware

decision

Custom
Awareness

Support
Model,

knowledge
about a
decision
to make

Infor-
mation
for a

quality-
aware

decision

Use QuASE to prepare
a quality-aware decision

<<iterative>>
<<iterative>>

Unit-level
revealing process

Context-level
usage process

dled (e.g. misunderstood or lost); this is guaranteed by the processes of awareness

support and continuous lifecycle integration of such support. These factors establish

the ground for increasing the degree of stakeholder satisfaction.

From the economical point of view, establishing the foundations for achieving the

flexibility of the QuASE solution allows for better cost management advantages

compared to other solutions. For example, even the most complete process-based so-

lutions such as [5] are built in top-down fashion, as a result, complete process model

needs to be built in any case; other techniques are even less flexible.

Literature

[1] Adolph, S., Kruchten, P.: Reconciling Perspectives: How People Manage the

Process of Software Development. In AGILE'11, 48-56, IEEE, 2011

[2] Becker, J., Janiesch, C., Pfeiffer, D., Seidel, S.: Evolutionary method

engineering: towards a method for the analysis and conception of management

information systems. In Proc. 12th Americas Conference on Information Systems

(AMCIS 2006), 3686-3697, 2006

[3] Cortellessa, V., Pierini, P., Spalazzese, R., Vianale, A.: MOSES: MOdeling

Software and platform architEcture in UML 2 for Simulation-based performance

analysis. In QoSA 2008, LNCS, Vol. 5281, 86-102, Springer, 2008

[4] de Miguel, M.A., Massonet, P., Silva, J.P., Briones, J.: Model Based

Development of Quality-Aware Software Services. In ISORC'08, 563-569, IEEE,

2008

[5] Fritzsche, M., Gilani, W., Fritzsche, C., Spence, I., Kilpatrick, P., Brown, J.:

Towards utilizing model-driven engineering of composite applications for business

performance analysis. In ECMDA-FA'08, 369-380, 2008

[6] Grambow, G., Oberhauser, R., Reichert, M.: Contextual Injection of Quality

Measures into Software Engineering Processes. In Int'l Journal on Advances in

Software, 4, 76-99, 2011

[7] Grassi, V., Mirandola, R., Sabetta, A.: Filling the gap between design and

performance/reliability models of component-based systems: A model-driven

approach. In The Journal of Systems and Software, 80, 528–558, 2007

[8] Henderson-Sellers, B., Ralyte, J.: Situational Method Engineering: State-of-

the-Art Review. In Journal of Universal Computer Science, 16, 424-478, 2010

[9] Hummel, O., Momm, C., Hickl, S.: Towards quality-aware development and

evolution of enterprise information systems. In Proceedings of the 2010 ACM

Symposium on Applied Computing, 137-144, ACM, 2010

[10] ISO 9241-210:2010. Ergonomics of human-system interaction - Part 210:

Human-centred design for interactive systems. International Organization for

Standardization, 2010

[11] Kaschek, R., Kop, C., Shekhovtsov, V.A., Mayr, H.C.: Towards Simulation-

Based Quality Requirements Elicitation: A Position Paper. In REFSQ 2008, LNCS,

Vol. 5025, 135-140, Springer, 2008

[12] Kim, S., Kim, D.-K., Park, S.: Tool support for quality-driven development of

software architectures. In ASE'10, 127-130, ACM, 2010

[13] Marzolla, M., Balsamo, S.: UML-PSI: the UML Performance SImulator. In

Proc. QEST’04, 340-341, IEEE, 2004

[14] Masolo, C., Borgo, S.: Qualities in formal ontology. In Proc. Workshop on

Foundational Aspects of Ontologies (FOnt 2005), 2-16, 2005

[15] Matinlassi, M.: Quality-Driven Software Architecture Model Transformation.

In Proceedings of the 5th Working IEEE/IFIP Conference on Software Architecture,

199-200, IEEE Computer Society, 2005

[16] Mutschler, B., Reichert, M.: Exploring the Dynamic Costs of Process-aware

Information Systems through Simulation. In EMMSAD'07, 163-172, 2007

[17] Paulk, M.C.: Key Practices of the Capability Maturity Model, Version 1.1,

technical report CMU/SEI-93-TR-025. Software Engineering Institute, Carnegie

Mellon University, 1993

[18] Project QuadREAD, http://quadread.ewi.utwente.nl, accessed Mar. 26, 2012

[19] Ralyte, J., Deneckere, R., Rolland, C.: Towards a generic model for

situational method engineering. In CAiSE 2003, LNCS, Vol. 2681, 95-110, Springer,

2003

[20] Schwaber, K., Beedle, M.: Agile Software Development with Scrum. Prentice

Hall PTR,, 2001

[21] Shekhovtsov, V.A.: On the evolution of quality conceptualization techniques.

In The Evolution of Conceptual Modeling, LNCS, Vol. 6520, 117–136, Springer,

2011

[22] Shekhovtsov, V.A., Kaschek, R., Kop, C., Mayr, H.C.: Relational service

quality modeling. In Non-Functional Properties in Service Oriented Architecture:

Requirements, Models and Methods, 172-193, IGI Global, 2011

[23] Shekhovtsov, V.A., Kop, C., Mayr, H.C.: Capturing the Semantics of Quality

Requirements into an Intermediate Predesign Model. In SIGSAND-EUROPE'2008

Symposium, LNI, Vol. P-129, 25-37, GI, 2008

[24] Shekhovtsov, V.A., Mayr, H.C., Kop, C.: Stakeholder Involvement into

Quality Definition and Evaluation for Service-Oriented Systems. In Proc. USER'12

Workshop at ICSE'12, 49-52, IEEE, 2012

[25] Shekhovtsov, V.A., Mayr, H.C., Kop, C.: Towards Conceptualizing Quality-

Related Stakeholder Interactions in Software Development. In Accepted for

publication in UNISCON 2012, LNBIP, Springer, 2012

[26] Shekhovtsov, V.A., Mayr, H.C., Kop, C.: Acquiring Empirical Knowledge to

Support Intelligent Analysis of Quality-Related Issues in Software Development. In

QUATIC'12, IEEE, 2012, in press

[27] Tahvildari, L., Kontogiannis, K., Mylopoulos, J.: Quality-Driven Software

Re-engineering. In J. of Systems and Software, 66, 225–239, 2003

[28] van de Weerd, I., Brinkkemper, S.: Meta-modeling for situational analysis

and design methods. In Handbook of Research on Modern Systems Analysis and

Design Technologies and Applications, 35-54, IGI Global, 2009

[29] Wada, H., Suzuki, J., Oba, K.: A Model-Driven Development Framework for

Non-Functional Aspects in Service Oriented Architecture. In International Journal of

Web Services Research, 5, 1-31, 2008

http://quadread.ewi.utwente.nl/

